Introductory Chemistry
52.101

• Welcome!
• Dr. Michael Eugene Pugh
 224 HSC, 389-4144
 email: mpugh@bloomu.edu
 homepage: http://facstaff.bloomu.edu/mpugh

 Web Chat: T: 6:00 - 9:00 PM
 Office: MW: 10:00 - 10:50 AM
 T: 2:00 - 2:50 PM
 Th: 1:00 - 1:50 PM
 F: 9:00 - 9:50 AM

Introduction

• Why study chemistry?

 Nature of Living Organisms
 Personal Health Perspective
 Environmental Issues
 Relation to Other Science Disciplines
 Forensic Science (CSI- pick a city!)
Chemistry Defined

- **Chemistry** - The field of study that deals with the composition, properties and changes of **matter**.

- **Matter** - Any physical entity that you
 - Can see
 - Can feel
 - Can taste
 - Can smell

 OR

- Any physical entity that has
 - Mass and Volume
What Are Properties?

• Substances are characterized by their properties.
• **Physical Properties** - Properties that do not involve a change in composition of a substance
 – Physical state (solid, liquid or gas), i.e., states of matter
 – Color
 – melting point
 – boiling point
 – density
• **Chemical Properties** - Properties that involve a change of composition of a substance
 – Chemical Reactions

Types of Changes of Matter

• Physical- does not alter chemical composition
• Chemical- does alter chemical composition
• Examples- Problems: 1.2, 1.18, 1.19
Demonstration of a Chemical Reaction

Chemical Reaction:
a chemical change

Water into Wine!
And
Back Again!

Smoke on the Water!

Classification of Matter - a closer look
• **Homogeneous** - Consists of only a single visible phase
 – Constant composition throughout
 – Often called a solution.
• **Heterogeneous** - Consists of two or more visible phases.

Classification Examples

- Problem 1.5
- Problem 1.6
- Problem 1.25
- Problem 1.28
• **Element** - A substance that cannot be decomposed into simpler substances by chemical means.

• **Compound** - A substance composed of two or more elements held together by chemical bonds.

Compounds

• **Law of Definite Proportions** – A compound always contains the same elements in the same proportions by weight (mass).
 – Mass – the amount of material in an object
 – Weight = mass x gravitational acceleration
 – As long as the measurements are being carried out at the same place, either weights or masses may be used for comparisons.
 • Traditionally chemists have used the term "weight" for comparing quantities of materials.
 • "Pounds" corresponds to weight.
 • "Grams" corresponds to mass.
Atoms and Molecules

- **Atom** - The smallest particle of an element that can exist and still undergo the characteristic chemical reactions of the element.
- **Molecule** - A neutral, independent unit containing two or more atoms joined together by covalent bonds.
- **Chemical Formula** – Gives the number of atoms of each element in a given chemical compound.
- **Diatomic Molecule** - A molecule that contains two atoms.
 - Diatomic molecular elements: H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂
 - Some diatomic molecular compounds: HCl, CO, NO
- **Polyatomic Molecule** - A molecule that contains three or more atoms.
 - P₄, S₈, H₂O, SO₂

Elements

- Each element has a **name** and a **symbol**.
 - The symbol starts with a CAPITAL letter. Some have a second lower case letter.
- Elements names and symbols can be based on:
 - Latin names (cuprum -> Cu (copper), aurum -> Au (gold), natrium -> Na (sodium))
 - Modern names (carbon -> C, oxygen -> O)
 - See Table 1.2 for additional examples
- Elements are combined to form chemical formulas
- Elements usually arranged in a table called the **Periodic Table**
 - Divided into metals and non-metals
 - 90 occur in nature
The Periodic Table

<table>
<thead>
<tr>
<th>1A</th>
<th>2A</th>
<th>3A</th>
<th>4A</th>
<th>5A</th>
<th>6A</th>
<th>7A</th>
<th>8A</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>57</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td>Th</td>
<td>Pa</td>
<td>U</td>
<td>Np</td>
<td>Pu</td>
</tr>
<tr>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
</tr>
</tbody>
</table>

Metals | Metalloids | Nonmetals