A CYCLOPEDIA OF EDUCATION

EDITED BY

PAUL MONROE, Ph.D.
PROFESSOR OF THE HISTORY OF EDUCATION, TEACHERS COLLEGE
COLUMBIA UNIVERSITY

WITH THE ASSISTANCE OF DEPARTMENTAL EDITORS

AND

MORE THAN ONE THOUSAND INDIVIDUAL CONTRIBUTORS

VOLUME TWO

FOR USE IN LIBRARY ONLY

New York
THE MACMILLAN COMPANY
1919

All rights reserved.
DRINKING FOUNTAINS

References:
GENT, I. Das Schulwesen Schleßhutte's bis zum Jahre 1789, in Mit. der Gesellschaft für deutsche Erziehungs- und Schulgeschichte Vol. xi, pp. 315, sq. (Berlin, 1905.)
KNOX, G. Aus der Bibliothek des Beatus Rhenanus. (Leipzig, 1889.)

DRINKING FOUNTAINS. — Where pure water under pressure is furnished to schoolhouses, there is no longer any excuse for drinking cups, and all the trouble, loathing, and possible contagion incident to common drinking vessels. Drinking fountains, when properly made, save time, prevent the careless use of water in or out of buildings, and best of all insure perfect cleanliness. The principle involved in the construction of all forms of drinking fountains consists in furnishing an opportunity for a child to drink from a stream of water bubbling up directly from the supply pipe and at the same time insuring that the mouth of the drinker does not come in contact with any part of the fixtures or that the water not swallowed cannot fall back to pollute the rising stream of pure water. A fountain must also meet certain other requirements. The stream must be steady, must be large enough to supply sufficient water for ordinarily rapid drinking, must mount at least two inches above any part of the drinking cup, must offer as little chance as possible for mischievous children to “squirt” each other, and must be as economical of water as legitimate demands will permit. The material of which they are made should be such that they can be easily kept clean and perfectly sanitary. A good quality of white well-glazed porcelain is perhaps the best material used. Metal or marble is hard to keep clean or free from rusts or stains. The nozzle of the service pipe should be nickled or in some better way rendered completely rustproof. All exposed parts should be strong, and provision should be made to prevent clogging of the catch basin, so that the unused water will disappear at once. Children, take a peculiar delight in dabbling in water, and this universal and almost resistless craving will assert itself and cause trouble unless the construction of the fountain is such as to make this practically impossible. The cuts here reproduced represent two forms of fountains which, when properly set, are thoroughly sanitary. Doubtless there are others equally perfect.

Single fountains can be distributed throughout a school building as demands dictate; but as far as possible they should not obstruct the halls, and yet should be visible from the halls. Special alcoves or niches should be arranged for them. In addition to those on the main floors, there should be “batteries” of them in the basement or in some inclosed place near the playground. There is always a rush for a drink after play, and many pupils must be supplied quickly. The accompanying cut shows a provision to supply this demand. The exorbitant price which prevails for such appliances has prevented their almost universal use where pure running water is to be had. It is, however, entirely possible for any plumber to arrange a less expensive series of fountains for a playground or a basement. A series of short pieces of water pipes set at right angles to a main feed pipe about thirty inches apart and extending over a common waste water trough can be made into fairly satisfactory fountains at very little expense. One of the simplest methods of preparing these is to cover them with a close-fitting nickled covering close the outer end with a cap and drill a hole on the upper side a few inches from the cap. By the use of a valve which can be adjusted to suit the pressure, and one to turn the water on and off as needed, a series of jets can be made to bubble up so that almost perfect sanitary conditions may prevail. Care and a bit of experimenting will be necessary in order to adjust the size of the holes, and the valves to the pressure of the water. Of course this arrangement will not be so neat, neither will it be so completely satisf-

F. B. D.

DRISLER, HENRY (1818-1897). — Head of the department of Greek in Columbia University for many years, and the editor of Harper's classical series and several Greek lexicons, was graduated at Columbia in 1839. For four years he was instructor in the gram-