
Department of Mathematics, Computer Science, and Statistics
Bloomsburg University

Bloomsburg, Pennsylvania 17815

Let’s Get Series(ous)

Summary

Presenting infinite series can be (used to be) a tedious and prescriptive task. A recent approach
to this material allows students to discover the calculus of infinite series, to proceed intuitively, to
accept what appears natural, and to dismiss other ideas that simply do not work. This eventually
leads to theoretical mathematics and the important question of convergence. This presentation
will include an introduction to infinite series similar to FDWK, an approach many AP Calculus
teachers appreciate and enjoy.
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Background

Summing an infinite series can be strange.
It it not the same as summing a finite number of terms.

Consider the following examples.

1.
1

2
+
1

4
+
1

8
+
1

16
+ · · · = 1

Illustration:

2.
1

1
+
1

2
+
1

3
+
1

4
+
1

5
+ · · · =∞

3. 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + · · ·

Is this 0? Or 1? Or 2? Or some other number?

Observations

1. The rules for adding a finite number of terms don’t work when adding an infinite number of
terms.

2. For example, the associate property doesn’t seem to hold.

3. A finite sum of real numbers produces a real number.

4. An infinite sum of real numbers produces ??
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Power Series

Infinite Series

An infinite series is an expression of the form

a1 + a2 + a3 + · · ·+ an + · · · , or
∞
∑

k=1

ak.

The numbers a1, a2, a3, . . . are the terms of the series; an is the nth term

The partial sums associated with an infinite series form a sequence of real numbers.

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

sn =
n
∑

k=1

ak

Note:

1. Each term in the sequence of partial sums is a finite sum.

2. If the sequence of partial sums las a limit S (converges) as n→∞, then the series converges
to S.

If the infinite series converges, we write

a1 + a2 + a3 + · · ·+ an + · · · =
∞
∑

k=1

ak = S.

3. Otherwise, the series diverges.

Example: Does the series 1− 2 + 3− 4 + 5− 6 + · · · converge or diverge?
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Example: Does the series
73

100
+

73

10000
+

73

1000000
+ · · ·

converge or diverge? Consider the sequence of partial sums.

Remarks:

1. A geometric series is an important example of an infinite series.

2. Each term is obtained from the preceding term by multiplying by the same number r.

Definition

The geometric series

a+ ar + ar2 + ar3 + · · ·+ arn−1 + · · · =
∞
∑

n=1

arn−1

converges to the sum
a

1− r
if |r| < 1, and diverges if |r| ≥ 1.

Note:

1. In words, the sum is
first term

1− common ratio

2. The interval −1 < r < 1 is the interval of convergence.

3. What happens if r = 1?

4. Prove this result.
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Example: Determine whether each series converges or diverges. If it converges, find the sum.

1.
∞
∑

n=1

22n31−n

2. 5− 10
3
+
20

9
− 40
27
+ · · ·

3.
∞
∑

k=0

(

4

7

)

4.
π

2
+
π2

4
+
π3

8
+ · · ·
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Example: If |x| < 1, then
∞
∑

n=1

xn = 1 + x+ x2 + x3 + · · · = 1

1− x
.

Remarks:

1. The expression on the right has domain x 6= 1.

2. The expression on the left has domain |x| < 1, the interval of convergence.

3. The equality holds on the intersection of the domains, where both sides are defined. On this
domain, the series is indeed the function 1/(1− x).

4. The partial sums are polynomials. Consider some graphs.

5. This expression is like a polynomial, but its infinite!

Definition

An expression of the form

∞
∑

n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · ·

is a power series centered at x = 0. An expression of the form

∞
∑

n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · ·

is a power series centered at x = a. The term cn(x− a)n is the nth term; the number a is
the center.

Note:

1. The geometric series
∞
∑

n=0

xn is a power series centered at x = 0.

2. A power series either (a) converges for all x, (b) converges on a finite interval with center a, or
(c) converges only at x = a.

Remarks:

1. The partial sums of a power series are polynomials. And, we can apply calculus techniques to
polynomials.

2. It seems reasonable that (some of) these calculus techniques (like differentiation and integration)
should apply to power series.

Let’s Get Series(ous) 6



Example: Given
1

1− x
= 1 + x+ x2 + x3 + · · ·+ xn + · · · on the interval (−1, 1).

Find a power series for ln(1− x). What about the interval of convergence? (Graphs)

Example: Given that

1

1 + x
= 1− x+ x2 − x3 + · · ·+ (−x)n + · · · , −1 < x < 1

find a power series to represent
1

(1 + x)2
. What about the interval of convergence?
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Theorem

If f(x) =
∞
∑

n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · ·

converges for |x− a| < R, then the series

∞
∑

n=1

ncn(x− a)n−1 = c1 + 2c2(x− a) + 3c3(x− a)2 + · · ·+ ncn(x− a)n−1 + · · ·,

obtained by differentiating the series for r term by term, converges for |x−a| < R and represents
f ′(x) on the interval. If the series for f converges for all x, then so does the series for f ′.

Theorem

If f(x) =
∞
∑

n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · ·

converges for |x− a| < R, then the series

∞
∑

n=0

cn
(x− a)n+1

n+ 1
= c0(x− a) + c1

(x− a)2

2
+ c2

(x− a)3

3
+ · · ·+ cn

(x− a)n+1

n+ 1
+ · · ·,

obtained by integrating the series for f term by term, converges for |x − a| < R, and represents
x
∫

a
f(t) dt on that interval. If the series for f converges for all x, then so does the series for the

integral.

Example: Use differentiation to find a series for f(x) =
2

(1− x)3
.

What is the interval of convergence?
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Taylor Series

Background :

1. We were able to find power series representations for certain functions.

2. Which functions have power series representations? How do we find these representations?

Example: Construct a polynomial P (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 such that

P (0) = 1, P ′(0) = 1, P ′′(0) = 2, P ′′′(0) = 3, P (4)(0) = 5.

Note:

1. The coefficient of the xn term in the polynomial is P (n)(0)/n!.

2. We can use this fact to construct a polynomial that matches the behavior of, say, f(x) = ex.

3. We are constructing an nth degree Taylor polynomial at x = 0.

4. If we continue to add terms, we get the Taylor series.
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Example: Construct some Taylor polynomials for sinx and cosx about x = 0.

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-1

1

PSfrag replacements

x

y

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-1

1

PSfrag replacements

x

y

f(x) = sinx f(x) = cosx
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Note:

1. These polynomials are constructed to act like the original function near a point. The only
information we really use to compute the coefficients are the derivatives at 0.

2. Remarkably, the information at x = 0 produces a series that looks like the sine near the origin,
and appears to be more and more like the sine everywhere.

3. It seems we can construct an entire function by knowing its behavior at a single point.

4. Convergence is an infinite process. The nth order Taylor polynomial is still not perfect.

5. But, we can approximate the sine of any number to any accuracy (given enough patience).

Definition

Let f be a function with derivatives of all orders throughout some open interval containing 0.
The Taylor series generated by f at x = 0 is

f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · =

∞
∑

k=0

f (k)(0)

k!
xk.

This series is also called the Maclaurin series generated by f .
The partial sum

Pn(x) =
∞
∑

k=0

f (k)(0)

k!
xk

is the Taylor polynomial or order n for f at x = 0.

Note:

1. f (0) = f .

2. Every power series constructed like this converges to f at x = 0.

3. The convergence may extend to an interval containing 0. The Taylor polynomials are good
approximations near 0.

Example: Find the fourth order Taylor polynomial centered at x = 0 that approximates each
function .

(a) f(x) = sin(2x)

(b) f(x) = sinx2
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Note: We are not restricted to centered at x = 0.

Definition

Let f be a function with derivatives of all orders throughout some open interval containing a.
The Taylor series generated by f at x = a is

f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + · · · =

∞
∑

k=0

f (k)(a)

k!
(x− a)k.

The partial sum
n
∑

k=0

f (k)(a)

k!
(x− a)k

is the Taylor polynomial of order n for f at x = a.

Example: Find the Taylor series for f(x) centered at the given value.

(a) f(x) = 1 + x− x2 x = 2.

(b) f(x) = ex x = 3.

(c) f(x) =
√
x x = 4.
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Note: Taylor series can be added, subtracted, multiplied by constants and powers of x (on the
interval of convergence), and the results are Taylor series.

Some common Maclaurin series.

1

1− x
= 1 + x+ x2 + · · ·+ xn + · · · =

∞
∑

n=0

xn (|x| < 1)

1

1 + x
= 1− x+ x2 − · · ·+ (−x)n + · · · =

∞
∑

n=0

(−1)nxn (|x| < 1)

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ · · · =

∞
∑

n=0

xn

n!
(all real x)

sinx = x− x3

3!
+
x5

5!
− · · ·+ (−1)n x2n+1

(2n+ 1)!
+ · · · =

∞
∑

n=0

(−1)n x2n+1

(2n+ 1)!
(all real x)

cosx = 1− x2

2!
+
x4

4!
− · · ·+ (−1)n x2n

(2n)!
+ · · · =

∞
∑

n=0

(−1)n x2n

(2n)!
(all real x)

ln(1 + x) = x− x2

2
+
x3

3
− · · ·+ (−1)n−1x

n

n
+ · · · =

∞
∑

n=1

(−1)n−1x
n

n
(−1 < x ≤ 1)

tan−1 x = x− x3

3
+
x5

5
− · · ·+ (−1)n x2n+1

2n+ 1
+ · · · =

∞
∑

n=1

(−1)n x2n+1

2n+ 1

Example: Find the Maclaurin series for each function.

(a) f(x) = x tan−1 x.

(b) f(x) = x2e−x.

(c) f(x) = e−x2

cosx.

Example:

(a) Find a power series to represent f(x) =
sinx

x
.

(b) The power series in (a) is not really a Maclaurin series for f , because f is not eligible to have
a Maclaurin series. Why not?

(c) If we redefine f as follows, then the power series in (a) will be a Maclaurin series for f . What
is the value of k?

f(x) =











sinx

x
x 6= 0

k x = 0
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Taylor’s Theorem

Remarks:

1. We use nth order Taylor polynomials to approximate functions, since we have to deal with finite
sums.

2. We need to know how good an approximation we have.

Some problems to think about.

1. Find a Taylor polynomial that will serve as a reasonable approximation for sinx on the interval
[−π, π].

2. Find a formula for the error if we use 1 + x2 + x4 + x6 to approximate 1/(1 − x2) over the
interval (−1, 1).

Theorem

If f has derivatives of all orders in an open interval I containing a, then for each positive integer
n and for each x in I,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n +Rn(x),

where

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some c between a and x.

Note:

1. This theorem provides a formula for the polynomial approximation and for the error involved
in using this approximation (over the interval I).

2. Rn(x) is the remainder of order n, or just the error term.

It is also called the Lagrange form of the remainder. The bounds on the error are therefore
called Lagrange error bounds.

3. If Rn(x)→ 0 as n→∞ for all x in I, then the Taylor series generated by f at x = a converges
to f on I.
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Example: Prove that the series
∞
∑

n=0

(−1)n x2n

(2n)!

converges to cosx for all real x.

Theorem

If there are positive constants M and r such that |f (n+1)(t)| ≤Mrn+1 for all t between a and x,
then the remainder Rn(x) in Taylor’s Theorem satisfies the inequality

|Rn(x)| ≤M
rn+1|x− a|n+1

(n+ 1)!
.

If these conditions hold for every n and all the other conditions of Taylor’s Theorem are satisfied
by f , then the series converges to f(x).

Example: Use the previous theorem to show that

∞
∑

k=0

xk

k!

converges to ex for all real x.
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Example: The approximation
√
1 + x ≈ 1 + (x/2) is used when x is small. Estimate the maximum

error when |x| < 0.01.

Radius of Convergence

Background :

1. We need a strategy for finding the interval of convergence of an arbitrary power series.

2. Any power series (centered at x = a) always converges at x = a.

3. Some power series converge for all real numbers, and some converge on a finite interval centered
at a.

Theorem

There are three possibilities for
∞
∑

n=0

cn(x− a)n with respect to convergence:

1. There is a positive number R such that the series diverges for |x − a| > R but converges for
|x − a| < R. The series may or may not converge at either of the endpoints x = a − R and
x = a+R.

2. The series converges for every x (R =∞).
3. The series converges at x = a and diverges elsewhere (R = 0).
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Remarks:

1. The number R is the radius of convergence.

The set of all values of x for which the series converges is the interval of convergence.

2. If 0 < R <∞ there is still a convergence question at the endpoints of the interval.

3. We need to learn how to find the radius of convergence, and then worry about the endpoints.

Here are some important definitions and theorems.

Theorem

If lim
n→∞

an does not exist or if lim
n→∞

an 6= 0 then the series
∞
∑

n=1

an diverges.

Theorem

The Direct Comparison Test

Let
∑

an be a series with no negative terms.

(a)
∑

an converges if there is a convergent series
∑

cn with an ≤ cn for all n > N , for some
integer N .

(b)
∑

an diverges if there is a divergent series
∑

dn of nonnegative terms with an ≥ dn for all
n > N , for some integer N .

Definition

Absolute Convergence

If the series
∑ |an| of absolute values converges, then

∑

an converges absolutely.

Theorem

If
∑ |an| converges, then

∑

an converges.

Theorem

The Ratio Test

Let
∑

an be a series with positive terms, and with lim
n→∞

an+1

an

= L. Then,

(a) The series converges if L < 1.

(b) The series diverges if L > 1.

(c) The test is inconclusive if L = 1.
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Example: Determine whether each series is convergent or divergent.

(a)
∞
∑

n=1

2n

3n + 1
(b)

∞
∑

n=0

n2e−n

(c)
∞
∑

n=1

(

1 +
1

n

)n

(d)
∞
∑

n=1

3n

n32n

Example: Find the radius of convergence for each power series.

(a)
∞
∑

n=0

(−1)n(4x+ 1)n (b)
∞
∑

n=1

(3x− 2)n
n

(c)
∞
∑

n=0

(x− 2)n
10n

(d)
∞
∑

n=0

nxn

n+ 2

Example: Find the interval of convergence of the series and within this interval find the sum of the
series as a function of x.

(a)
∞
∑

n=0

(x− 1)2n

4n
(b)

∞
∑

n=0

(√
x

2
− 1

)n

(c)
∞
∑

n=0

(

x2 − 1
3

)n

Example: Show that the series
∞
∑

n=0

n2

2n
converges and find the sum.
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Convergence at the Endpoints

Background :

1. In general, it’s hard to find the exact sum of a series.

Geometric series are pretty easy, and there are standard techniques for telescoping sums.

But usually, lim
n→∞

sn = ?

2. We need some tests to determine convergence or divergence (without actually finding the sum).

Theorem

The Integral Test

Let {an} be a sequence of positive terms. Suppose an = f(n), where f is a continuous, positive,

decreasing function of x for all x ≥ N (N a positive integer). Then the series
∞
∑

n=N

an and the

integral

∫ ∞

N
f(x) dx either both converge or both diverge.

Example: Determine whether the series converges or diverges:
∞
∑

n=1

1

n2 + 1
.

p-Series

The p-series
∞
∑

n=1

1

np
is convergent if p > 1 and divergent if p ≤ 1.
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Note:

1. If p = 1, this is the harmonic series.

2. We should not infer from the Integral Test that the sum of the series is equal to the value of
the integral.

∞
∑

n=1

1

n2
=

π2

6
but

∫ ∞

1

1

x2
dx = 1

Example: Determine whether the series converges or diverges:
∞
∑

n=1

lnn

n
.

Theorem

The Limit Comparison Test

Suppose that an > 0 and bn > 0 for all n ≥ N (N a positive integer).

1. If lim
n→∞

an

bn
= c, 0 < c <∞, then

∑

an and
∑

bn both converge or both diverge.

2. If lim
n→∞

an

bn
= 0 and

∑

bn converges, then
∑

an converges.

3. If lim
n→∞

an

bn
=∞ and

∑

bn diverges, then
∑

an diverges.
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Example: Determine whether each series converges or diverges.

(a)
∞
∑

n=1

1

2n − 1 (b)
∞
∑

n=1

2n2 + 3n√
5 + n5

A series in which the terms are alternately positive and negative is an alternating series.

Some examples:

1− 1
2
+
1

3
− 1
4
+
1

5
− 1
6
+ · · · =

∞
∑

n=1

(−1)n−1

n

−1
2
+
2

3
− 3
4
+
4

5
− 5
6
+
6

7
− · · · =

∞
∑

n=1

(−1)n n

n+ 1

−2 + 1− 1
2
+
1

4
− 1
8
+ · · · =

∞
∑

n=1

(−1)n4
2n
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Theorem

The Alternating Series Test

The series
∞
∑

n=1

(−1)n+1un = u1 − u2 + u3 − u4 + · · ·

converges if all three of the following conditions are satisfied:

1. Each un is positive;

2. un ≥ un+1 for all n ≥ N , for some integer N ;

3. lim
n→∞

un = 0.

Example: Determine whether each series converges or diverges.

(a)
∞
∑

n=1

(−1)n3n
4n− 1 (b)

∞
∑

n=1

(−1)n+1 n2

n3 + 1

Note: If an alternating series
∞
∑

n=1

(−1)n+1un satisfies the conditions in the previous theorem, then

the truncation error for the nth partial sum is less than un+1 and has the same sign as the first
unused term.

Example: Find the sum of the series
∞
∑

n=1

(−1)n
n!

correct to three decimal places.
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Definition

A series
∑

an is called absolutely convergent if the series of absolute values
∑ |an| is convergent.

Definition

A series
∑

an is called conditionally convergent if it is convergent but not absolutely conver-
gent.

Theorem

If a series
∑

an is absolutely convergent, then it is convergent.

Example: Determine whether the series
∞
∑

n=1

cosn

n2
is convergent or divergent.

Rearrangements of Absolutely Convergent Series

If
∑

an converges absolutely, and if b1, b2, b3, . . . , bn, . . . is any rearrangement of the sequence {an},
then

∑

bn converges absolutely and
∞
∑

n=1
bn =

∞
∑

n=1
an.

Rearrangements of Conditionally Convergent Series

If
∑

an converges conditionally, then the terms can be arranged to form a divergent series. The
terms can also be rearranged to form a series that converges to any preassigned sum.
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Testing a Power Series
∞
∑

n=0

cn(x− a)n for Convergence

1. Use the Ratio Test to find the values of x for which the series converges absolutely. Ordinarily,
this is an open interval

a−R < x < a+R.

In some cases, the series converges for all values of x. The series may converge only at x = a.

2. If the interval of absolute convergence is finite, test for convergence or divergence at each
endpoint. The Ratio Test fails at these points. Use a comparison test, the Integral Test, or the
Alternating Series Test.

3. If the interval of absolute convergence is a− R < x < a+ R, conclude that the series diverges
(it does not even converge conditionally) for |x− a| > R, because for those values of x, the nth
term does not approach zero.

Example: For what values of x do the following series converge?

(a)
∞
∑

n=0

(−1)n(4x+ 1)n (b)
∞
∑

n=0

(x− 2)n
10n

(c)
∞
∑

n=0

n(x+ 3)n

5n
(d)

∞
∑

n=0

(−2)n(n+ 1)(x− 1)n
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