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Chapter 1

Introduction to the TI–83
Plus

This chapter is a brief introduction to the TI–83 Plus and the use of
calculator lists. Some basic commands and techniques are discussed that
are used throughout this manual. More detailed descriptions of built–
in calculator functions are given in the TI–83 Plus Graphing Calculator
Guidebook.

The keypad on the TI–83 Plus is almost identical to the original TI–83.
On the TI–83 Plus there is a new, purple APPS key, the MATRX menu is
a 2nd (yellow, or secondary) function, and the FINANCE package is found
in the APPS menu. The number keys are white, larger, and easier to use.

The TI–83 Plus is a Flash calculator. As new software becomes avail-
able, it may be downloaded to the TI–83 Plus (and installed) in order
to upgrade the machine. The TI–83 Plus has a more flexible and power-
ful archive feature. Collections of programs, lists, equations, etc. may be
stored as a group and easily recalled or transferred to other calculators. In
addition, the TI–83 Plus has almost seven times the memory of the TI–83.
This allows the user to store more (and larger) data sets, programs, and
applications.

On, Off, Contrast, Memory: The ON key is, of course, used to turn
the calculator on, and the key sequence 2nd ; OFF is used to turn the
machine off. There is also a battery saving feature built into the TI–83
Plus that will automatically turn the machine off after approximately 5
minutes of inactivity.

The yellow 2nd key and the blue up and down arrows (in the top right
portion of the calculator keypad) are used to adjust the screen contrast.

1



2 Chapter 1. Introduction to the TI–83 Plus

The keystrokes 2nd ; 4 darken the screen while 2nd ; 5 makes the

screen lighter. To save keystrokes, press 2nd and hold down 4 (or

5 ). This keystroke technique will continuously darken (or lighten) the
screen. Release either arrow key when you have reached the desired screen
contrast. As the contrast is adjusted there is a single digit, 0–9, that
appears in the top right corner of the screen. This number is an indication
of the screen contrast (the higher the number, the darker the screen), and
can be used to gauge the energy level of the batteries in the calculator.
While the TI–83 Plus does display a warning message if the batteries are
low, if the contrast is set to 9 and the screen is still very light, this is also
an indication that the four AAA batteries need to be replaced.

All real and complex variables, lists, matrices, Y–variables, programs, pic-
tures, graph databases, groups, and strings stored in the calculator mem-
ory may be (selectively) deleted. In addition, the calculator memory may
be checked or reset. The MEMORY menu (obtained by using 2nd ; MEM )
is shown in Figure 1.1. The option ClrAllLists is used to simultane-

Figure 1.1: MEMORY

menu.

ously clear all calculator lists and is particularly useful for beginning a
new problem.

Home Screen: If you think of all the menus and functions of the TI–
83 Plus as being part of a huge tree diagram, then the Home Screen is
the top–most, or main, screen. It is familiar, comfortable ground, and
instructions and programs are executed from this screen. The blinking
rectangular cursor (on any screen, or branch) indicates the calculator is
in typeover mode and is ready to accept commands. To return to the
Home Screen from any other screen, use 2nd ; QUIT .

Arithmetic Calculations: The standard arithmetic operations are lo-
cated on the right column of the calculator keypad: + (addition), -

(subtraction), × (multiplication), ÷ (division), and ∧ (exponentiation).
The usual hierarchy of operations applies and where there is a tie, the
TI–83 Plus evaluates expressions left to right. Parentheses should be used
freely in arithmetic expressions to ensure the desired order of evaluation,
and the (-) key is used for negation. After typing an arithmetic expres-
sion (or command), press ENTER to evaluate. Figure 1.2 illustrates several
arithmetic calculations. The evaluation rules for implied multiplication

Figure 1.2: Arithmetic
calculations.

Figure 1.3: Standard
versus implied
multiplication.

are slightly different from those on the TI–82. Figure 1.3 demonstrates
the use of standard versus implied multiplication.

Note! While bad mathematical practice, you may omit the close, or right,
parenthesis at the end of an arithmetic expression. The TI–83 Plus will
automatically close all open parentheses. 3

Last Entry, Last Answer: Every entry, or expression, is automatically
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stored in the TI–83 Plus memory (subject to space limitations), even as
entries scroll off the screen and even after the calculator is turned off. To
recall, or redisplay, the most recent, or last, entry on the calculator screen,
use 2nd ; ENTRY . To access earlier entries, repeat the keystrokes 2nd ;
ENTRY as necessary until the desired entry is displayed. The variable ANS
always contains the value of the most recent, or last, calculation. The last

answer variable is accessed by using 2nd ; ANS and this token (ANS) may
be part of any arithmetic calculation.

Menus: The menu keys on the calculator keypad are used to access built–
in functions, operations, and settings not found on any of the fixed keys. If
you press a menu key, one or more menus will be displayed on the top line
of the calculator screen. The current, or active, menu will be highlighted,
or darkened (Figure 1.4). The blue left and right arrow keys, � and � ,

Figure 1.4: The STAT ;
EDIT menu.

move the top line cursor to the other main menus. To select from a menu,
press the number of the item desired, or move the cursor up or down with
the blue arrow keys (4 and 5 ) to highlight the desired selection, and
press ENTER .

Note! The TI–83 Plus has two special features for quickly viewing and
selecting menu choices. These shortcuts are designed to save keystrokes.

(N1) If the left–most top line menu is highlighted, pressing the blue left
arrow, � , will cause the cursor to wrap around and highlight the
right–most top line menu. Similarly, you can wrap around from the
right to the left by using � from the right–most top line menu.

(N2) If a top line menu has more than a screen–full of options (indicated
by a down arrow (↓) on the bottom line item, press ALPHA ; 5 to

move down one screen at a time. Similarly, pressing ALPHA ; 4 will
move the cursor up one screen. You can also wrap around the top
(bottom) of a menu list by using the up (down) arrow from the first
(last) entry in a menu list. 3

Display Modes: As the name suggests, the MODE key is used to view
and/or change certain calculator modes, for example, settings that deter-
mine the way numbers and graphs are displayed on the screen. It is also
used to control other calculator configuration options, for example radian

versus degree mode (Figure 1.5). The settings in effect are highlighted, or

Figure 1.5: MODE

settings.

darkened. To change/select a setting, move the blinking cursor with the
blue arrow keys to the desired option and press ENTER to highlight that
option.

Functions: To define a function, or Y-VARS, press the Y= key. Using the
Y= editor you can store up to 10 functions. A function may be defined in
terms of X (function graphing), T (parametric graphing), θ (polar graph-
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ing), or U(n) and V(n) (sequence graphing). The independent variable, or
type of function, is determined by the mode settings. Figure 1.6 shows
several functions defined in terms of X. The icon to the left of each variable

Figure 1.6: The Y=

editor.

in the Y= editor indicates the graph style (line, dot, thickness, etc.). To
change a graph style, position the cursor on the icon and press ENTER to
toggle through the options. Statistical plots may also be turned on or off
from within the Y= editor.

Plotting Graphs: The GRAPH key (in the upper right part of the cal-
culator keypad) is used to display the graph of a function, a sequence,
or a statistical plot. The plot region, or viewing window, is set in the
WINDOW ; WINDOW menu (Figure 1.7). The tokens Xmin and Xmax set the

Figure 1.7: WINDOW ;
WINDOW settings.

minimum and maximum value on the x (horizontal) axis. Xscl is the
distance between tick marks on the x axis. Ymin, Ymax, and Yscl work
similarly for the y axis. The token Xres controls the pixel resolution for
function graphs only. If Xres=4, for example, functions are evaluated at
every 4 th horizontal pixel. Smaller values for Xres produce smoother,
but slower, calculator graphs. The value must be an integer from 1 to 8;
the default value is 1. The seven tokens, Xmin, Xmax, Xscl, Ymin, Ymax,
Yscl, and Xres, are collectively referred to as the window settings.

The ZOOM ; ZOOM menu contains options for automatic window settings.
These include a standard viewing window ([−10, 10]×[−10, 10]), a friendly

window ([−4.7, 4.7]× [−3.1, 3.1]), zooming in/out, and options for graphs
of trigonometric functions and for statistical plots. The TRACE key is used
to move around on graphs displayed on the screen. If you press this key
while a graph is on the screen, the calculator displays a blinking cross on a
graph and coordinates of this cross at the bottom of the screen. The blue
left and right arrows may be used to move the blinking cross along the
graph, and the up and down arrows may be used to move among graphs.

Built–in Statistics: The TI–83 Plus has several built–in functions for
analyzing data. Many are contained in the STAT ; CALC (Figure 1.8) and
the STAT ; TESTS (Figure 1.9) menus. Some of the functions are: summary

Figure 1.8: STAT ; CALC
menu.

Figure 1.9: STAT ;
TESTS menu.

statistics for a single data set or two sets simultaneously, various regression
lines, large and small sample confidence intervals for a population mean,
various hypothesis tests, and analysis of variance.

Other built–in statistical functions are in the menus DISTR ; DISTR (Fig-
ure 1.10) and DISTR ; DRAW (Figure 1.11). These menus include choices
for computing values of common probability distribution functions (pdf)
and cumulative distribution functions, and for illustrating probability by
shading area under a pdf.

Plotting Statistical Data: The STATPLOT ; STATPLOTS menu is used
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to access statistical plot options and to turn on/off all statistical plots
(Figure 1.12). One, two, or three statistical plots may be displayed on

Figure 1.10: DISTR ;
DISTR menu.

Figure 1.11: DISTR ;
DRAW menu.

Figure 1.12: STATPLOT ;
STATPLOTS menu.

the screen simultaneously. The TI–83 Plus can display scatterplots, line
graphs, two types of boxplots, histograms, and normal probability plots.

Programs: The PRGM ; EXEC, EDIT, and NEW menus are used to execute
existing calculator programs stored in memory, edit existing programs,
and to create new programs, respectively. In this manual, all programs
will be executed from the Home Screen. From the Home Screen, press
PRGM and in the EXEC menu select the desired program (by highlighting
or pressing the number or letter that corresponds to the desired program).
(Programs are sorted alphanumerically.) This keystroke sequence causes
the TI–83 Plus to paste a copy of the program name on the Home Screen
(together with the calculator function prgm). To execute, or run, the
program, press ENTER .

Note! The screen up/down and wrap around features work in the PRGM ;
EXEC and PRGM ; EDIT menus. These shortcuts are very useful when
searching a long list of programs. 3

Lists: A TI–83 Plus list is a set, or collection, of numbers, or observations.
A list can hold up to 999 numerical values and is the principal way to store
data (for analysis) on the TI–83 Plus. Many of the built–in statistical
functions and programs operate on or use data stored in a list (or lists)
during execution.

There are six simple built–in names for lists: L1, L2, L3, L4, L5, and L6.
These list names, or tokens, are accessed using the keystrokes 2nd ; L1, or
2nd ; L2, etc. You may also create and use lists with a descriptive name
for easy identification. The name must be a string of up to 5 characters.
The first character must be a letter which may be followed by letters and
numbers, including the greek letter θ. The number of lists is limited by
the available memory. There are two primary places in the TI–83 Plus for
creating and editing a list: on the Home Screen, or in the stat list editor
(accessed using STAT ; EDIT ; EDIT).

Example: Coffee has become a staple at the breakfast table and through-
out the day for many Americans. In a recent survey, ten men and seven
women were asked, “How many cups of coffee do you drink per day?” The
results are given in the table below.

Group Number of Cups of Coffee

Men 5 2 1 7 7 4 3 5 6 2

Women 2 2 3 1 1 1 8

Create list L1 on the Home Screen so that it contains the data from
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Men. Also on the Home Screen, create a list named WOMEN containing the
numerical values for women.

Calculator Solution:

(S1) On the Home Screen, curly braces ({ }) are used to denote, or en-
close, lists. Numbers in a list created on the Home Screen are sepa-
rated by commas. Type the numerical values for Men within curly
braces separated by commas. Finish the expression by using the
keystrokes STO→ ; L1 ; ENTER to store the data in list L1 (Figure
1.13). The list may be displayed on the Home Screen by press-
ing L1 ; ENTER . Spaces rather than commas separate values in a
displayed list.

Note!

(N1) After you press ENTER the TI–83 displays the contents of the
list.

(N2) The three dots at the end of the displayed list indicate there is
more data in the list that cannot be included on one calculator
screen line. To view other entries in the list, scroll through the
data by using the blue left and right arrow keys ( � and � ).

(N3) You can edit a single entry, or row, in a list by using subscript

notation, for example, L1(5) denotes the 5th row in list L1

(Figure 1.14). 3

(S2) Type the values for Women within curly braces separated by com-
mas. Complete the expression by using the STO→ key, followed by

Figure 1.13: Creating
and displaying list L1 on
the Home Screen.

Figure 1.14: Use of list
subscript notation.

Figure 1.15: Creating a
named list.

the name of the list, and ENTER (Figure 1.15).

Note! Named lists used in any calculation must include the small
L in front of the name to indicate a list. Otherwise the TI–83 Plus
interprets the list name as (the product of) single variables in an
arithmetic expression. The symbol L is included in front of the name
when choosing from the LIST ; NAMES menu, or just the symbol L

can be copied from the LIST ; OPS menu. 3 2

To clear all of the entries in a list, or lists, from the Home Screen useFigure 1.16: Clearing
lists.

Figure 1.17: Accessing
the stat list editor.

STAT ; EDIT ; ClrList (Figure 1.16). If you clear the rows of a named
list, the TI–83 does not delete the list name. A named list can be deleted
using MEM ; Mem Mgmt/Del ; List.

The stat list editor is another way to create and edit TI–83 Plus lists. To
access this feature use STAT ; EDIT ; EDIT (Figure 1.17). Lists may be
included as part of mathematical expressions and functions, and may be
referred to by programs.
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Example: The table below lists the mean costs for textbooks per year
reported by students majoring in different academic disciplines.

Average Cost
Major for Texbooks

Accounting $221.80
Biology 250.95
Psychology 175.66
Mathematics 275.60
Economics 234.50
Music 191.75
Philosophy 288.55

Use the stat list editor to store this data into list L1. Divide each entry in
this list by 2 (to obtain an estimate for the mean cost per semester) and
place the new list in L2.

Calculator Solution:

(S1) Clear the entries in list L1 and access the stat list editor.

(S2) Use the blue arrow keys to place the solid rectangular cursor on the
first row of list L1. This cursor indicates the active list row. As you
type an entry it will appear on the bottom line of the stat list editor.
Press ENTER to place the entry into the list and to make the next

Figure 1.18: List L1 in
the stat list editor.

row active (Figure 1.18).

Note!

(N1) Do not use commas in numbers on the TI–83. This will produce
a SYNTAX error message.

(N2) Data must be added in ascending row order in a list. In the
stat list editor, you cannot position the cursor beyond the first
empty row in any list.

(N3) To edit existing data in a list, position the cursor on the desired
row. Type the correct number and press ENTER .

(N4) To delete data in a list, position the cursor on the desired row
and press DEL . This keystroke sequence deletes the row and
closes up the list.

(N5) To place additional data in a list (other than at the bottom),
position the cursor on the row following the number to be in-
serted. Press INS to open up the list. A 0 is initially placed
in the new, inserted row. Type the desired, additional number
and press ENTER to insert it into the list. 3

(S3) Divide each entry in list L1 by 2, and store the resulting list in L2

(Figure 1.19). The resulting list is displayed on the Home Screen

Figure 1.19: Use of lists
in an arithmetic
expression.
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and may also be viewed in the stat list editor (Figure 1.20).

Note! Named lists may also be created, viewed, and edited in the
stat list editor.

(N1) To create a named list, place the cursor on the top line (the line
containing the names) and use the right arrow key ( � ) to move
to an unnamed column. Name= will appear on the bottom line
of the stat list editor and the alpha (green) characters become
active (as indicated by the alpha cursor in the top right portion
of the calculator screen). You can then type the desired name
of a list, followed by ENTER (Figure 1.21).

(N2) To make a named (or built–in) list the result of an arithmetic
expression, position the cursor on the name. Type the arith-
metic expression and press ENTER (Figure 1.22).

(N3) If a named list is created as a result of an arithmetic calculation,
its contents are not immediately visible in the stat list editor.
To view a named list created in this way, position the cursor
on the top line of an unnamed list. Type the name of the list
followed by ENTER . The numbers stored in the named list will
then be displayed.

(N4) The command SetUpEditor (accessed through STAT ; EDIT)
is used to control the lists displayed in the stat list editor.
SetUpEditor followed by a sequence of (up to 20) lists replaces
the stat list editor with the new sequence of lists (Figures 1.23,
1.24). SetUpEditor used without any arguments clears the

Figure 1.20: Resulting
list viewed in the stat
list editor.

Figure 1.21: Creating a
named list in the stat
list editor.

Figure 1.22: A list as
the result of an
arithmetic calculation,
in the stat list editor.

Figure 1.23: Use of
SetUpEditor to control
the lists in the stat list
editor.

Figure 1.24: The
resulting stat list editor.

stat list editor and restores the built–in lists L1–L6. 3 2

The TI–83 Plus Graphing Calculator Guidebook has much more infor-
mation about lists, other ways they may be created and used. Most of
the calculator programs presented in this supplement are illustrated us-
ing data stored in lists with descriptive names. Unless noted, you do not

have to store data in the same descriptive–name or built–in list(s) used
in the Calculator Solution. The programs normally display results on the
Home Screen, and may temporarily use other named lists, built–in lists,
or matrices, or change calculator modes.



Chapter 2

Descriptive Analysis and
Presentation of
Single–Variable Data

This chapter describes techniques for summarizing and describing data
sets. There are four basic types of descriptive statistics: (1) measures
of central tendency, (2) measures of dispersion (spread), (3) measures of
position, and (4) types of distribution. The calculator may be used to
produce graphical and numerical summaries, but emphasis here is also
placed on interpretation of results.

2.1 Graphic Presentation of Data

A circle graph, or pie diagram, is used to summarize attribute data.
It is a very common graph used in business settings, newspapers, and
magazines to illustrate parts of the total. A circle is divided to show the
amount of data that belongs to each category as a proportional part of
the circle. The calculator program CIRCLE1 may be used to construct a
circle graph.

Example: The table below lists the number of cases of each type of op-
eration performed at General Hospital last year. Display this data on a
circle graph.

Calculator Solution:

(S1) On the Home Screen or using the stat list editor, enter the number
of cases for each type of operation in the named list OPERS (Figure

1Program by Chuck Vonder Embse, Eightysomething, Volume 3, Number 2, Spring
1994.

9



10 Chapter 2. ... Single–Variable Data

2.1).

Note: As discussed in the Preface, descriptive–name or built–in lists
may be used to store data. Named lists will be used in Calculator
Solutions wherever possible to identify data and to illustrate more
of the TI–83 Plus capabilities. 3

Type of Operation Number of cases

Thoracic 20
Bones and joints 45
Eye, ear, nose, and throat 58
General 98
Abdominal 115
Urologic 74
Proctologic 65
Neurosurgery 23

(S2) Choose the program CIRCLE from the PRGM ; EXEC menu, and exe-
cute this program on the Home Screen (Figure 2.2).

Figure 2.1: Number of
cases for each type of
operation.

Figure 2.2: Execute the
program CIRCLE.

Figure 2.3: Input list
containing data.

Figure 2.4: Options for
displayed data.

Figure 2.5: Circle graph
for General Hospital
data.

Figure 2.6: Automobile
make data.

(S3) At the first program prompt, enter the name of the list containing
the data, here OPERS (Figure 2.3). (Press ENTER after each input
value.)

Note: A named list may be selected from the LIST ; NAMES menu
or entered from the keypad (preceded by the list indicator L). 3

(S4) Select the method to display the data (along with the circle graph),
percentages or actual data (Figure 2.4).

(S5) The circle graph is displayed on the Graph Screen (Figure 2.5). The
slices are given counterclockwise with the percentages (or data) in
the top left corner of the screen. 2

A bar graph is often used to graphically summarize category or attribute
data. A rectangle is drawn corresponding to each category, or class, with
size proportional to the frequency. Bar charts are sometimes constructed
so that the bars extend horizontally to the right. The TI–83 Plus may
be used to construct a bar chart by assigning a number to each class or
category. Use the statistical plot type histogram.

Example: The distribution of automobiles in the faculty parking lot on
a recent Monday morning is given in the table below. Construct a bar
graph that summarizes this categorical data.

Calculator Solution:

(S1) Assign Ford 1, GM 2, Honda 3, Dodge 4, and Other 5. Enter the
number for each make in the list MAKE and the corresponding count
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in the list NUMB (Figure 2.6). Use the calculator to draw rectangles
of width 1, centered at each class code.

Make Number

Ford 75
GM 60
Honda 35
Dodge 20
Other 5

(S2) Press STATPLOT and select Plot1 from the STATPLOTS menu.

(S3) In the Plot1 menu select On and Type histogram. Set Xlist to the
name of the list containing the code for each automobile make and
Freq to the name of the list containing the number of each make
(Figure 2.7). (Type the name of each list or select the name using
LIST ; NAMES.)

(S4) In the WINDOW ; WINDOW menu, enter values for the window variables
so that the calculator will draw rectangles of width 1, centered at
each class code. Since 1 is the midpoint of the first class, set Xmin

to .5. Set Xmax to 5.5 and Xscl to 1 (the width of each class). Ymin
should be 0 (the minimum number in any class), Ymax should be at
least the largest count, and Yscl should be a reasonable distance
between tick marks (Figure 2.8).

(S5) Press GRAPH to display the bar chart (Figure 2.9).

Note:

(N1) When displaying a bar chart, make sure there are no other
STATPLOTS turned On and that there are no (selected) func-
tions in the Y= editor. Otherwise the desired bar chart will be
displayed simultaneously with any other selected graph.

(N2) Use the TRACE key to move along the midpoint of each rectan-
gle. The class interval and number are displayed at the bottom

Figure 2.7: Plot1

settings.

Figure 2.8: WINDOW

settings.

Figure 2.9: Bar chart for
automobile data.

Figure 2.10: TRACE used
with a STATPLOT ; Type
histogram.

Figure 2.11: New
WINDOW settings.

Figure 2.12: Bar chart
with extra empty
classes.

of the screen (Figure 2.10).

(N3) The calculator bar chart is sometimes more pleasing if an extra
empty class, or category, is added on each end of the graph.
Figure 2.11 shows the new WINDOW settings and Figure 2.12
shows the resulting bar chart.

(N4) A small space often separates each bar. This can be accom-
plished by changing the codes assigned to automobile make
and/or modifying the viewing window. Figures 2.13 and 2.14
show an example with different values for Xmin, Xmax, and Xscl.

(N5) It is possible to add text to a graph (and label the bars) by
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using DRAW ; DRAW ; Text. 3 2

A Pareto Diagram is a bar graph with the bars arranged from the most
numerous category to the least numerous category. The diagram includes
a line graph displaying the cumulative percentages and counts for the
bars. The Pareto diagram is used often in quality–control applications to

Figure 2.13: WINDOW

settings to add extra
space between bars.

Figure 2.14: Bar chart
with extra space
between bars.

identify the numbers and types of defects that happen within a product or
service. The calculator program PARETO may be used to display a Pareto
diagram.

Example: The final daily inspection defect report for an assembly line at
a local manufacturer is given in the table below.

Defect Number

Dent 8
Bend 12
Blemish 56
Chip 23
Scratch 45
Others 6

Construct a Pareto diagram for this defect report. Management has given
the production line the goal of reducing their defects by 50%. What two
defects should they give special attention to in working toward this goal?

Calculator Solution:

(S1) Enter the number of defects in the list DEFEC (Figure 2.15). Execute

Figure 2.15: Number of
defects by category.

Figure 2.16: Name of
the list containing the
defect numbers.

Figure 2.17: Enter two
WINDOW parameters.

Figure 2.18: Pareto
diagram.

the program PARETO.

(S2) Enter the name of the list containing the number of defects (Figure
2.16), and values for Ymax and Yscl (Figure 2.17). Ymax must be at
least as big as the total number of defects. The Pareto diagram is
displayed on the Graph Screen (Figure 2.18).

Note: The remaining WINDOW parameters are set by the calculator
program. 3

(S3) The line graph connects the cumulative total defects and the hori-
zontal lines are at 20, 40, 60, 80, and 100 percent of the total number
of defects. The numbers at the top of each bar correspond to the
complaint row in the original table.

(S4) Approximately 65% of the reported defects are due to blemishes and
scratches. The assembly line crew should work to reduce these two
defects in order to reach their goal. 2

A dotplot is a graph used to display the distribution of a data set. The
display represents each piece of data with a dot positioned along a mea-
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surement scale. The measurement scale may be horizontal or vertical. The
frequency of values is represented along the other scale. The calculator
program DOTPLOT may be used to construct a dotplot.

Example: A random sample of 19 exam scores was selected from a large
introductory statistics class. The scores are given in the table below.

Exam Scores

76 74 82 96 66 76 78 72 52 68

86 84 62 76 78 92 82 74 88

Construct a dotplot for this data.

Calculator Solution:

(S1) Enter the exam score for each student in the list SCORE. Execute the
program DOTPLOT.

(S2) Enter the list containing the data (Figure 2.19). On the next input
screen, enter values for the window parameters Xmin, Xmax, Xscl,
and Ymax (Figure 2.20). The value for Ymax must be at least the
largest frequency in any resulting dotplot column. The values for

Figure 2.19: Enter the
name of the list
containing the data.

Figure 2.20: Enter
values for the window
parameters.

Figure 2.21: Dotplot for
the exam scores.

Ymin and Yscl are assigned by the program.

(S3) The resulting dotplot is displayed on the Graph Screen (Figure 2.21).

Note:

(N1) It may be necessary to execute DOTPLOT several times with
different values for Xmin, Xmax, and Ymax in order to obtain an
appropriate diagram.

(N2) The value for Ymax must be less than or equal to 62. 3 2

A frequency distribution is a table that summarizes data by classes
or class intervals. In a typical grouped frequency distribution, there are
usually 5–20 classes of equal width. The table may contain columns for
class number, class interval, tally (if constructing by hand), frequency,
relative frequency, cumulative relative frequency, and class mark. In an
ungrouped frequency distribution each class consists of a single value.

The calculator program FREQDIST constructs a frequency distribution that
may be viewed in the stat list editor. Input includes the left–hand end-
point of the first class interval, the right–hand endpoint of the last class
interval, and the width of each class interval.

Example: The hemoglobin A1c test, a blood test given to diabetics during
their periodic checkups, indicates the level of control of blood sugar during
the past two to three months. The data in the table below was obtained
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for 40 different diabetics at a university clinic that treats diabetic patients.
Construct a grouped frequency distribution using the classes 3.7 – <4.7,
4.7 – <5.7, 5.7 – <6.7, etc. Which class has the highest frequency?

Blood Test Results

6.5 5.0 5.6 7.6 4.8 8.0 7.5 7.9 8.0 9.2
6.4 6.0 5.6 6.0 5.7 9.2 8.1 8.0 6.5 6.6
5.0 8.0 6.5 6.1 6.4 6.6 7.2 5.9 4.0 5.7
7.9 6.0 5.6 6.0 6.2 7.7 6.7 7.7 8.2 9.0

Calculator Solution:

(S1) Enter the test result for each patient in the list BLOOD and execute
the program FREQDIST. At the first program prompt enter the name
of the list containing the data.

(S2) Enter values for the lower class boundary of the frequency distribu-
tion (left–hand limit of the first class interval), upper class boundary
(right–hand limit of the last class interval), and the width (for each
class) (Figure 2.22).

(S3) The frequency distribution is constructed and stored in the stat list
editor. The first list contains the original data sorted in ascending
order. The lists LBND and UBND identify each class interval, FREQ
contains the frequency for each class, RELFQ contains the relative
frequency for each class, and CUMRF contains the cumulative relative
frequency for each class (Figures 2.23, 2.24).

(S4) The class 5.7 – <6.7 has the highest frequency. The frequency is 16
and the relative frequency is .40.

Note:

(N1) The program FREQDIST uses the TI–83 Plus built–in function
SetUpEditor to store the frequency distribution in the stat
list editor in the appropriate order. To remove the frequency
distribution and restore the lists L1–L6, execute SetUpEditor

without any arguments (lists) from the Home Screen.

(N2) The calculator program places observations equal to a class
boundary in the larger class. 3 2

Figure 2.22: FREQDIST

input.

Figure 2.23: Sorted data
and class intervals.

Figure 2.24: Frequency,
relative frequency, and
cumulative relative
frequency.

A histogram is a bar graph representing a frequency distribution of a
quantitative variable. The components of a histogram include:

(H1) A title, which identifies the population or sample.

(H2) A vertical scale, which identifies the frequencies in each class.

(H3) A horizontal (measurement) scale, which identifies the variable. The
class boundaries or class marks are labeled along the x axis.
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The graph provides a quick look at the distribution of the data. A his-
togram is a built–in statistical plot on the TI–83 Plus.

Example: Construct a histogram for the blood test results given in the
previous example.

Calculator Solution:

(S1) Enter the data in the list BLOOD. Press STATPLOT and select Plot1
from the STATPLOTS menu.

(S2) In the Plot1 menu select On and Type histogram. Set Xlist to the
name of the list containing the data. (Type the name of the list or
select the name using LIST ; NAMES.) Set Freq to 1, the frequency
of occurrence of each observation (Figure 2.25).

(S3) In the WINDOW ; WINDOW menu, select values for the window variables
so that class intervals are evident and the entire graph fits on the
calculator screen. Set Xmin to the lower class boundary of the first
class, Xmax to the upper class boundary of the last class, and Xscl to
the width of each class. Ymin should be 0 (the minimum frequency
in any class), Ymax must be at least the largest frequency, and set
Yscl to a reasonable distance between tick marks (Figure 2.26).

(S4) Press GRAPH to display the histogram (Figure 2.27).

Note:

(N1) When displaying a histogram, make certain there are no other
STATPLOTS turned On and that there are no (selected) func-
tions in the Y= editor. Otherwise the desired histogram will be
displayed simultaneously with any other selected graph.

(N2) To display a histogram on the TI–83 Plus, you do not need
to construct a frequency distribution first. However, you must
decide on the class intervals and widths, and you may have to
experiment with values for Ymax.

(N3) Use the TRACE key to move along the midpoint of each rect-
angle. The class interval and frequency are displayed at the
bottom of the Graph Screen (Figure 2.28).

(N4) The calculator histogram is sometimes more pleasing if an ex-
tra empty class is added on each end of the graph. Figure
2.29 shows the new WINDOW settings and Figure 2.30 shows the

Figure 2.25: Plot1

menu.

Figure 2.26: WINDOW

settings.

Figure 2.27: Histogram
display.

Figure 2.28: TRACE used
with a histogram.

Figure 2.29: New
WINDOW settings.

Figure 2.30: Histogram
with extra empty
classes.

resulting graph. 3 2

Suppose a frequency distribution is given without the supporting data. It
is still possible to use the TI–83 Plus to construct a histogram based on
the class marks.
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Example: A recent survey of Roman Catholic nuns summarized their ages
in the table below.

Age Frequency Class Mark

20 up to 30 34 25
30 up to 40 58 35
40 up to 50 76 45
50 up to 60 187 55
60 up to 70 254 65
70 up to 80 241 75
80 up to 90 147 85

Construct a histogram for this age data.

Calculator Solution:

(S1) Enter the class mark for each interval in the list AGE and the fre-

Figure 2.31: Class
marks and frequencies.

Figure 2.32: Plot1

settings.

Figure 2.33: WINDOW

settings.

Figure 2.34: Histogram
for age data.

quency for each interval in the corresponding row of the list COUNT

(Figure 2.31).

(S2) In the Plot1 menu, select On, Type histogram, Xlist:AGE, and set
Freq to the list containing the class frequencies, COUNT (Figure 2.32).

(S3) Select appropriate WINDOW settings (Figure 2.33). Press GRAPH to
display the histogram (Figure 2.34). 2

An ogive is a plot of cumulative frequency or cumulative relative fre-
quency versus class limit. A horizontal scale identifies the upper class
boundaries. Every ogive starts on the left with a (relative) frequency of
zero at the lower class boundary of the first class and ends on the right
with a cumulative relative frequency of 1, or cumulative frequency of n
(the number of observations in the data set).

Example: An insurance company recently surveyed employees to deter-
mine their annual salary. The frequency distribution below gives the re-
sults for 50 random employees in $1000.

Cumulative
Class Cumulative Relative

Boundaries Frequency Frequency Frequency

35 ≤ x < 45 2 2 0.04
45 ≤ x < 55 2 4 0.08
55 ≤ x < 65 7 11 0.22
65 ≤ x < 75 13 24 0.48
75 ≤ x < 85 11 35 0.70
85 ≤ x < 95 11 46 0.92
95 ≤ x < 105 4 50 1.00
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Construct an ogive using cumulative relative frequencies for this employee
salary data.

Figure 2.35: Class
boundaries and
cumulative relative
frequencies.

Figure 2.36: Plot1

settings.

Figure 2.37: WINDOW

settings.

Figure 2.38: Ogive for
salary data.

Calculator Solution:

(S1) Enter the class boundaries in the list SALRY and the corresponding
cumulative relative frequencies in the list CUMRF (Figure 2.35).

(S2) Select appropriate settings for Plot1 (Figure 2.36) and WINDOW (Fig-
ure 2.37). Press GRAPH to view the ogive (Figure 2.38). 2

2.2 Numerical Descriptive Statistics

A measure of central tendency is a numerical value, or single number
statistic, that locates the middle of a data set. It represents a typical

observation or indicates where the majority of the data is clustered.

Four common measures of central tendency are defined below.

(D1) The (arithmetic) mean, x, of a set of values is the sum of the
values divided by the total number of values.

x =
1

n

n
∑

i=1

xi =
1

n
(x1 + x2 + · · · + xn)

(D2) The median, x̃, of a set of values is the value in the middle position
when the data is ranked in order according to size.

(D3) The mode is the value that appears most frequently. If two or
more values in a sample are tied for the highest frequency, there is
no mode.

(D4) The midrange is the number exactly midway between the lowest
value L and the highest value H : midrange = (L + H)/2.

Example: A recent Atlantic Monthly (Nov.1990) contained the number of
days in the standard school year for several different countries. The data
is given in the table below.

School Days

216 190 195 185 182 160 233 216 200
200 192 180 185 190 192 200 211 175
180 185 180 190 184 180 191 243 220

Find the mean and the median number of days per year of school for the
countries given.
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Calculator Solution:

(S1) Enter the data in the list DAYS.

(S2) Use the TI–83 Plus built–in function for summary statistics to find
the mean and median: STAT ; CALC ; 1-Var Stats (Figure 2.39,
2.40). The mean is 194.63 and the median is 190.00.

Note:

(N1) If a list is not given as an argument, 1-Var Stats uses the
data in the list L1 by default.

(N2) The mean and/or median may also be found on the Home
Screen using built–in functions in the LIST ; MATH menu (Fig-

Figure 2.39: Built–in
function 1-Var Stats.

Figure 2.40: Summary
statistics.

Figure 2.41: Mean and
median list functions.

ure 2.41).

The mode and midrange may be computed using the program CENTRAL.

Example: Recruits for a police academy were required to undergo a test
that measures their exercise capacity. The exercise capacity (measured
in minutes) was obtained for each of 20 recruits and is given in the table
below.

Exercise Capacity

25 27 30 33 30 32 30 34 30 27
26 25 29 31 31 32 34 32 33 30

Find the mode and midrange.

Calculator Solution:

(S1) Enter the exercise capacity data in the list MINS. Execute the pro-
gram CENTRAL. At the first program prompt enter the name of the
list containing the data (Figure 2.42).

(S2) Select the MIDRANGE option from the program menu (Figure 2.43).
The midrange (29.50) is displayed on the Home Screen (Figure 2.44).

Figure 2.42: Input list
containing data.

Figure 2.43: Program
menu.

Figure 2.44: Computed
midrange.

Note: After displaying a measure of central tendency, the program
CENTRAL is paused. (The pause indicator is in the top–right corner
of the screen. To continue execution, press ENTER .) 3

(S3) Press ENTER to return to the program menu. Select option 2 to
compute the mode. The mode is displayed on the Home Screen and
the program pauses (Figure 2.45). The mode is 30 and it occurs 5
times.

(S4) Press ENTER to return to the program menu. Select option 3 to exit
the program.

Note: If there is no mode, the program will find and display the
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smallest value among those values with the tied, highest frequency.
3 2

Measures of central tendency describe the middle of a data set. These

Figure 2.45: Computed
mode and frequency.

statistics describe only one aspect of the data. Two very different data
sets may have similar measures of central tendency. Measures of dispersion
indicate variability, or spread, and are also used to characterize a data set.
Some common measures of dispersion are defined below.

Suppose x1, x2, . . . , xn is a set of observations.

(D1) The range is the difference in value between the highest value and
the lowest value.

(D2) The sample variance is the sum of the squared deviations about
the mean divided by n − 1:

s2 =
1

n − 1

n
∑

i=1

(xi − x)2.

The sample standard deviation is the positive square root of the
sample variance: s =

√
s2 .

Each of these measures may be computed on the Home Screen using an
arithmetic expression and/or built–in calculator functions.

Example: A small business wanted to know the daily amount each of its
employees spent for lunch. A random sample of 20 employees revealed
the following amounts.

Lunch Money

13.95 15.85 4.50 6.75 12.00 8.25 15.75
4.15 1.25 14.10 10.75 15.00 8.15 22.70
2.45 17.80 14.05 7.50 10.65 4.10

Find the range, variance, and standard deviation.

Calculator Solution:

(S1) Enter the data in the list LUNCH. Compute 1-Var Stats for the data
in this list. The standard deviation, Sx, is given in the top output

Figure 2.46: Standard
deviation, highest value,
and lowest value
computed using 1-Var

Stats.

screen: s = 5.71 (Figure 2.46).

Note: After executing 1-Var Stats, the computed summary statis-
tics are displayed on the Home Screen and stored in calculator vari-
ables, or tokens. These variables may be used in arithmetic expres-
sions in order to find other summary statistics. 3

(S2) In the VARS ; VARS ; Statistics ; XY menu use the calculator vari-
ables that stand for the highest value and the lowest value, maxX and
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minX, in an arithmetic expression to find the range (Figure 2.47).

Figure 2.47: Range and
variance computed using
calculator variables.

Figure 2.48: Range
computed using LIST ;
MATH functions.

Figure 2.49: Variance
and standard deviation
computed using LIST ;
MATH functions.

(S3) In the VARS ; VARS ; Statistics ; XY menu use the variable that
stands for sample variance, Sx, in an arithmetic expression to find
the variance (Figure 2.47).

Note: These summary measures of dispersion may be computed on
the Home Screen using LIST ; MATH operations (Figures 2.48, 2.49).

3 2

If data is presented in the form of an ungrouped frequency distribution,
the formulas below may be used to find the mean, variance, and standard
deviation. If the data is presented in the form of a grouped frequency
distribution, the class marks may be used in the formulas below in order
to estimate the mean, variance, and standard deviation.

Let x1, x2, . . . , xk be a set of values (in an ungrouped frequency distri-
bution) or a set of class marks (in a grouped frequency distribution).

Suppose f1, f2, . . . , fk are the corresponding frequencies and n =
k
∑

i=1

fi.

(D1) The mean for the frequency distribution is given by

x =

∑

xifi
∑

fi
=

∑

xifi

n

(D2) The variance for the frequency distribution is given by

s2 =

∑

x2
i fi − (

∑

xifi)
2

∑

fi

∑

fi − 1
=

∑

x2
i fi − (

∑

xifi)
2

n

n − 1

The standard deviation for the frequency distribution is s =
√

s2.

These statistics may be computed using the calculator program GROUPED.

Example: A farmer conducted an experiment in order to judge the value
of a new diet for his animals. The weight gain (in grams) for chicks fed
on a high–protein diet is given in the table below.

Weight Gain Frequency

12.5 2
12.7 6
13.0 22
13.1 29
13.2 12
13.8 4

Find the mean, variance, and standard deviation.
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Calculator Solution:

(S1) The data is given in the form of an ungrouped frequency distribu-
tion. Enter the value for each weight gain in the list GAIN and the
frequency for each gain in the corresponding row of the list FREQS

(Figure 2.50).

(S2) Execute the program GROUPED. Input the name of the list containing
the marks or data, and the name of the list containing the frequen-
cies (Figure 2.51).

(S3) The results are displayed on the Home Screen. The mean is 13.0760,

Figure 2.50: Data and
frequencies in the stat
list editor.

Figure 2.51: Input lists.

Figure 2.52: Resulting
summary statistics for
the frequency
distribution.

s2 = .0532, and s = .2307 (Figure 2.52). 2

Measures of position are used to locate a specific value in relation to the
rest of the data. Quartiles divide the ranked data into four parts. The
first quartile, Q1, is a number such that at most 25% of the data is smaller
in value than Q1 and at most 75% is larger. The second quartile is the
median. The third quartile, Q3, is a number such that at most 75% of
the data is smaller in value than Q3 and at most 25% is larger.

Percentiles divide a set of ranked data into 100 equal subsets; each set
of data has 99 percentiles. The kth percentile, Pk, is a value such that at
most k% of the data is smaller in value than Pk and at most (100 − k)%
of the data is larger.

Two additional measures of central tendency are defined in terms of the
quartiles. The midquartile is the numerical value midway between the
first quartile and the third quartile: midquartile = (Q1 + Q3)/2. The in-
terquartile range is the difference between the first and third quartiles:
iqr = Q3 − Q1.

These four measures of position may be computed using the calculator
program POSITION.

Example: An experiment was conducted in order to test how quickly
certain fabrics ignite when exposed to a flame. The table below lists the
ignition times for a synthetic fabric.

Ignition Times

30.1 31.5 34.0 37.5 30.1 31.6 34.5 37.5 30.2
31.6 34.5 37.6 30.5 32.0 35.0 38.0 31.0 32.4
35.0 39.5 31.1 32.5 35.6 31.2 33.0 36.0 31.3
33.0 36.5 31.3 33.0 36.9 31.4 33.5 37.0

Find the quartiles, the midquartile, the interquartile range, and the 88th
percentile.
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Calculator Solution:

(S1) Enter the ignition time data in the list IGNIT. Execute the program
POSITION.

(S2) At the first program prompt, enter the name of the list containing
the data. Select the QUARTILES option from the program menu
(Figure 2.53). The quartiles are displayed on the Home Screen and
the calculator pauses (Figure 2.54). Q1 = 31.3 and Q3 = 36.0. Press
ENTER to return to the program menu.

(S3) Select the MIDQUARTILE option and then the IQR option from the
main menu to find the midquartile and interquartile range (Figure
2.55, 2.56). The midquartile is 33.65 and the interquartile range is
4.7.

(S4) Select the PERCENTILE option from the program menu and input
the value for k (Figure 2.57). The kth percentile is displayed on the
Home Screen and the calculator pauses (Figure 2.58). P88 = 37.5.
Press ENTER to return to the program menu and select EXIT to quit
the program.

Note: The quartiles, midquartile, and interquartile range may be
computed on the Home Screen using built–in calculator functions
and/or arithmetic expressions.

(N1) Compute 1-Var Stats for the data in the list IGNIT. The quar-
tiles are displayed in the bottom screen of output (Figure 2.59)
and all displayed values are stored in calculator statistics vari-
ables.

(N2) In the VARS ; VARS ; Statistics ; PTS menu use the calculator
variables that stand for the first and third quartile, Q1 and
Q3, in an arithmetic expression to find the midquartile and the

Figure 2.53: Main
program menu.

Figure 2.54: Quartiles.

Figure 2.55:
Midquartile.

Figure 2.56:
Interquartile range.

Figure 2.57: Input for
kth percentile.

Figure 2.58: 88th
percentile.

interquartile range (Figure 2.60). 3 2

The 5–number summary is an effective way to describe a set of data and
is composed of:

(1) L, the smallest value in the data set,

(2) Q1, the first quartile (also called P25, the 25th percentile),

(3) x̃, the median,

(4) Q3, the third quartile (also called P75, the 75th percentile),

(5) H , the largest value in the data set.

A box–and–whisker display, or boxplot, is a graphic representation of
the 5–number summary. The five numerical values (smallest, first quartile,
median, third quartile, and largest) are located on a scale, either horizon-
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tal or vertical. A box is drawn with edges at the quartiles and a line is
drawn at the median. A line segment (whisker) is drawn from Q1 to the
smallest value, and another line segment is drawn from Q3 to the largest
value. This regular box–and–whisker display is a built–in statistical plot.

The TI–83 Plus will also display a modified box–and–whisker display.
This display uses the inner fences defined by

IF = Q1 − (1.5 ∗ iqr) , IF = Q3 + (1.5 ∗ iqr)

to identify outliers. Each whisker is drawn to the most extreme value
within the inner fence. Any value beyond an inner fence is marked with

Figure 2.59: Quartiles
computed using 1-Var

Stats.

Figure 2.60: Midquartile
and interquartile range
computed using
statistics variables.

2, +, or ·.

Example: A research study of manual dexterity involved determining the
time required to complete a certain task. The time (in seconds) required
for each of 40 first graders is given in the table below.

Dexterity Test Times

7.1 8.3 9.4 11.0 7.2 8.4 9.6 11.1 7.2 8.4
9.9 11.2 7.6 8.9 10.1 11.2 7.6 9.0 10.1 11.2
7.9 9.0 10.1 12.0 8.1 9.1 10.2 13.6 8.1 9.1

10.3 14.7 8.1 9.1 10.5 14.9 8.3 9.1 10.7 15.5

Find the 5–number summary and draw the box–and–whisker display.

Calculator Solution:

(S1) Enter the dexterity test times in the list TIMES. Compute the 1-Var
Stats for this list. The 5–number summary is displayed in the
bottom screen of output (Figure 2.61): L (minX) = 7.10, Q1 = 8.30,

Figure 2.61: 1-Var

Stats for TIMES.

Figure 2.62: Plot1

settings for regular
boxplot.

x̃ (Med) = 9.25, Q3 = 10.85, and H (maxX) = 15.50.

(S2) In the STATPLOT menu, select Plot1. In the Plot1 menu, select On
and Type regular boxplot (no outliers), set Xlist to TIMES and Freq

to 1 (Figure 2.62).

(S3) Select appropriate WINDOW settings (Figure 2.63) and press GRAPH

to display the boxplot (Figure 2.64).

Note:

(N1) The TI–83 Plus ignores the y axis WINDOW settings when draw-
ing a boxplot.

(N2) Up to three boxplots may be displayed simultaneously. This
makes it easy to graphically compare different samples. If only
one plot is displayed, it is always placed in the top third of the
Graph Screen, regardless of plot number.
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(N3) Press TRACE to move along the 5–number summary for the
boxplot (Figure 2.65).

(N4) To display a modified boxplot, in the Plot1 menu change Type
to the fourth graph (boxplot with outliers), and select a Mark

for any outliers (Figure 2.66). Press GRAPH to display the
Figure 2.63: WINDOW

settings.

Figure 2.64: Regular
boxplot for data in
TIMES.

Figure 2.65: Use of
TRACE with a boxplot.

Figure 2.66: Plot1

settings for a modified
boxplot.

Figure 2.67: Modified
boxplot for data in
TIMES.

Figure 2.68: z–score for
65.

modified boxplot (Figure 2.67). There are three outliers, values
beyond an inner fence. 3 2

The z–score, or standard score, for a specific value is a measure of
relative standing in terms of the mean and standard deviation. The z–
score for a value x is

z =
value − mean

st. dev.
=

x − x

s
.

The z–score may be found using TI–83 Plus built–in functions and/or
arithmetic expressions.

Example: All applicants for a certain civil service position are required
to take a special aptitude test. Since the pool of applicants varies consid-
erably from year to year, new employees are often hired on the basis of
the relative standing of their test score. The scores from fifteen randomly
selected applicants are given in the table below. Find the z–score for the
(specific) value 65.

Aptitude Test Scores

35 55 25 75 80 50 45 65
70 40 30 45 30 55 70

Calculator Solution:

(S1) Enter the data in the list APT.

(S2) On the Home Screen, enter an arithmetic expression using LIST ;
MATH functions to find the z–score for 65 (Figure 2.68). 65 is .77
standard deviations away from the mean.

Note: Use the list APT in the arithmetic expression to find the z–
score for each observation (Figure 2.69). Figure 2.70 shows each
observation along with its z–score. 3 2

The following result allows us to interpret and use the standard deviation
to describe a sample or population, and to compare the variability of one
data set with another.

Chebyshev’s Theorem: The proportion of any distribution that lies
within k standard deviations of the mean is at least 1 − (1/k2), where k
is any positive number larger than 1. This theorem applies to all distri-
butions of data.
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The calculator program CHEBY applies this theorem to a sample or popu-
lation, summary statistics or a set of observations.

Example: A recent article compared algebra courses that used computer–

Figure 2.69: Calculation
of each z–score.

Figure 2.70: Each value
and z–score.

assisted instruction with traditional lecture courses. The scores that the
computer–assisted group made on an achievement test consisting of 50
problems had these summary statistics: n = 57, x = 23.14, s = 7.02.
Find the limits within which at least 75% of the scores fall.

Calculator Solution:

(S1) Execute the program CHEBY. Since in this example the summary

Figure 2.71: Summary
statistics known.

Figure 2.72: Input
values for x, s, and k.

Figure 2.73: Resulting
proportion and interval.

statistics are known, select STATS at the first program prompt (Fig-
ure 2.71).

Note: Use the LIST option if the sample data or the entire popula-
tion is stored in a list. 3

(S2) Enter values for the mean, standard deviation, and k (Figure 2.72).

(S3) At least 75% of the scores fall in the interval (9.10, 37.18) (Figure
2.73). Press ENTER to return to the K: prompt. The program will
continue to generate results for other values of k, or for a value less
than or equal to 1 the program will exit. 2
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Notes:



Chapter 3

Descriptive Analysis and
Presentation of Bivariate
Data

When bivariate data results from two qualitative (attribute or categorical)
variables, the data is often arranged on a cross–tabulation or contingency

table. The calculator program CROSSTAB may be used to summarize data
in a cross–tabulation and to obtain row, column, and total percentages.

Example: Thirty students from a college were randomly identified and
classified according to two variables: (1) gender (M/F) and (2) major
(liberal arts, business administration, technology), as shown in the table
below.

Student Gender Major Student Gender Major

1 M LA 16 M BA
2 F BA 17 M LA
3 M LA 18 M BA
4 F LA 19 F LA
5 M BA 20 M T
6 M T 21 M BA
7 F LA 22 F BA
8 M T 23 M T
9 F BA 24 F LA

10 F BA 25 M T
11 M T 26 M BA
12 M LA 27 F LA
13 F LA 28 F T
14 M T 29 M BA
15 F T 30 M LA

27
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Summarize this data in a 2 × 3 cross–tabulation table.

Calculator Solution:

(S1) Code the data as follows: for gender M = 1, F = 2; for major
LA = 1, BA = 2, and T = 3. Enter the gender value for each

Figure 3.1: Coded data
for the first seven
students.

Figure 3.2: Input lists.

Figure 3.3:
Cross–tabulation table,
frequencies.

Figure 3.4:
Cross–tabulation table,
row percentages.

Figure 3.5:
Cross–tabulation table,
column percentages.

student in the named list GEND and the corresponding major values
in the list MAJOR. Figure 3.1 shows the coded data for the first seven
students.

(S2) Execute the program CROSSTAB. Input the name of the list cor-
responding to rows and the list corresponding to columns in the
cross–tabulation table (Figure 3.2).

(S3) The cross–tabulation table with the frequency for each cross cate-
gory of the two variables along with marginal totals is stored in the
matrix [A]. The cross–tabulation table showing row percentages is
stored in the matrix [B], column percentages in the matrix [C], and
overall percentages based on the grand total in the matrix [D]. All
of these percentage matrices also contain marginal totals.

(S4) Each matrix may be viewed on the Home Screen or in the matrix
editor ( MATRIX ; EDIT). Figure 3.3 shows the matrix [A], frequency
for each category, on the Home Screen. Here is the interpretation of
the entries in the matrix [A].

Major

LA BA T Row Totals

Gender
Male 5 6 7 18

Female 6 4 2 12

Col Totals 11 10 9 30

(S5) Figure 3.4 shows the cross–tabulation table of percentages based on
row totals and Figure 3.5 shows the percentages based on column
totals (both displayed on the Home Screen).

(S6) Figure 3.6 shows the cross–tabulation table of percentages of grand
total, displayed in the matrix editor. The table indicates 60% of the
sample were male, 40% female, 36.7% were Liberal Arts majors, etc.

Figure 3.6: Cross–tabulation table, percentages.
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Note: The coded data for each list must begin with 1 and use only
consecutive positive integers. 3 2

The cross–tabulation tables like those constructed in the Example above
may be displayed in side–by–side bar graphs using the calculator program
GROUPBAR.

Example: Construct a bar graph displaying the row percentages for the
gender–major data given in the Example above.

Calculator Solution:

(S1) Using the cross–tabulation table for the row percentages (Figure
3.4), enter the percentages for each major, by gender, in the lists
LA, BA, and T (Figure 3.7). Execute the program GROUPBAR.

(S2) On the program menu, select the number of groups (only 2 or 3) to
display side–by–side (Figure 3.8). In this example there are three
groups, or majors.

(S3) Enter the three lists containing the percentages, a reasonable value
for Ymax (the maximum percentage), and a value for Yscl (Figure
3.9).

(S4) The bar chart is displayed on the graph screen (Figure 3.10). Un-
shaded bars correspond to the first major (LA), horizontal shaded
bars correspond to the second major (BA), and diagonal shadded

Figure 3.7: Percentages
for each major, by
gender.

Figure 3.8: Number of
groups.

Figure 3.9: Input lists
and WINDOW parameters.

Figure 3.10: Bar graph.

bars correspond to the third major (T). 2

If bivariate data consists of one qualitative and one quantitative variable,
the quantitative values may be viewed as belonging to separate samples.
Each sample, or data set, is identified by levels of the qualitative variable.
Using the TI–83 Plus, single–variable summary statistics (1-Var Stats)
may be obtained for each sample and the results may be displayed in
tabular form for comparison. The TI–83 Plus may also be used to display
up to three boxplots simultaneously, on the same measurement axis, in
order to compare the distribution of each sample.

Example: The long distance charges for randomly selected phone numbers
using one of three different carriers are given in the table below.

Company A Company B Company C

20.30 23.20 6.95 9.80 38.40 23.75
19.80 28.95 14.75 13.75 55.40 24.80
22.70 27.40 9.25 11.80 38.80 42.00
24.50 24.60 12.15 21.05 16.75 24.40
21.70 28.40 13.15 13.60 33.05 16.00

Construct a boxplot for each sample and display the graphs side–by–side.
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Compare the distributions.

Calculator Solution:

(S1) Enter the data for each company in a separate list: COMPA, COMPB,
and COMPC (Figure 3.11).

Figure 3.11: Data for
each phone company.

Figure 3.12: Plot1

settings.

Figure 3.13: Plot2

settings.

Figure 3.14: Plot3

settings.

(S2) Select appropriate plot settings for each of the three statistical plots
(Figures 3.12, 3.13, 3.14) and WINDOW parameters (Figure 3.15).

(S3) Press GRAPH to display the boxplots simultaneously (Figure 3.16).

Figure 3.15: WINDOW

settings.
Figure 3.16: Simultane-
ous boxplots.

Both Company A and Company B have compact distributions, in
comparison with Company C. Most of the data for Company B is
smaller than Companies A and C. The data for Company C has
more variability and larger values. 2

If bivariate data consists of two quantitative variables, the values are often
expressed mathematically as ordered pairs (x, y). The first value, x, is the
input, or independent, variable, and the second value, y, is the output,
or dependent, variable. This bivariate data may be presented graphically
on a scatter diagram: a plot of all ordered pairs of bivariate data on a
coordinate axis system. The input variable x is plotted on the horizontal
axis, and the output variable y is plotted on the vertical axis. A scatter
diagram, or scatter plot, is a TI–83 Plus built–in statistical plot.

Example: A recent study investigated the calories and fat in some popular
fast–food items. The data is given in the table below.

Calories (x) 270 420 210 450 130 310 290 450 446

Fat (y) 9 20 10 22 6 25 7 20 20

Calories (x) 640 233 552 360 838 199 360 345 552

Fat (y) 38 11 55 6 20 12 36 28 22

Construct a scatter diagram for this data. Is there any pattern?

Calculator Solution:

(S1) Enter the Calorie data in the list CALOR and the Fat data in the list
FAT (Figure 3.17).

Figure 3.17: Calorie and
Fat data.



31

(S2) Set up Plot1 ( STATPLOT ; STATPLOTS ; Plot1). Select On, Type

scatter plot (the first plot type), set Xlist to CALOR, Ylist to FAT,
and select the desired Mark (Figure 3.18).

(S3) Select appropriate WINDOW settings (Figure 3.19) and press GRAPH

Figure 3.18: Plot1

settings.

Figure 3.19: WINDOW

settings.

Figure 3.20: Scatter
diagram.

Figure 3.21: TRACE

feature with a scatter
diagram.

to display the scatter diagram (Figure 3.20).

(S4) The scatter diagram suggests the two variables are related. As the
number of calories rise, so does the fat content.

Note:

(N1) Use the TRACE key to move along the points on the graph.
The x and y values are displayed at the bottom of the screen
(Figure 3.21).

(N2) A quick method to find a reasonable viewing window is to use
ZoomStat (in the ZOOM ; ZOOM menu) first. This will auto-
matically select WINDOW settings so that all data points will be
displayed on the Graph Screen. The WINDOW settings usually
need to be modified to include more friendly numbers. 3 2

Suppose (x1, y1), (x2, y2). . . . , (xn, yn) represent n pairs of observations on
two variables. The coefficient of linear correlation, or Pearson’s
product moment correlation coefficient, r is a numerical measure
of the strength of the linear relationship between the two variables. The
formula for r is

r =

∑

(x − x)(y − y)

(n − 1)sxsy
=

SS(xy)
√

SS(x)
√

SS(y)
.

Note:

(N1) The summation in the formula for r extends from i = 1 to n.

(N2) sx and sy are the standard deviations of the x and y variables.

(N3) SS(x), SS(y), SS(xy) are the sum of squares for x, y, and xy, respec-
tively.

(N4) −1 ≤ r ≤ +1: Coefficients of +1 and −1 describe perfect linear
correlation.

(N5) The closer r is to 1 in either direction, the greater the strength of
the correlation. The strength of the correlation is not dependent on
the direction.

(N6) The coefficient of determination, denoted r2, is the proportion
of the total variation in one variable that is explained by the other
variable. It is computed by squaring the coefficient of linear corre-
lation, r2 = r · r. The magnitude of the coefficient of determination
is smaller that that of the coefficient of linear correlation. It is a
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more conservative measure of the linear relationship between two
variables. 3

Example: In a certain physical education class, several fitness scores were
recorded. The following sample is the number of push–ups and sit–ups
done by ten randomly selected students.

Student 1 2 3 4 5 6 7 8 9 10

Push-ups (x) 27 22 15 35 30 52 35 55 40 40

Sit–ups (y) 30 26 25 42 38 40 32 54 50 43

Construct a scatter diagram and compute the coefficient of linear corre-
lation.

Calculator Solution:

(S1) Enter the push–up and sit–up data in the lists PUSH and SIT, re-
spectively.

(S2) Set up Plot1 ( STATPLOT ; STATPLOTS ; Plot1). Select On, Type

scatter plot, set Xlist to PUSH, Ylist to SIT, and select the desired
Mark (Figure 3.22).

Figure 3.22: Plot1

settings.

Figure 3.23: WINDOW

settings.

Figure 3.24: Scatter
diagram.

Figure 3.25: Execute
DiagnosticOn to display
r and r2.

Figure 3.26: Use of
LinReg(a+bx) to
compute r and r2.

Figure 3.27:
LinReg(a+bx) results.

(S3) Select appropriate WINDOW settings (Figure 3.23) and press GRAPH

to display the scatter diagram (Figure 3.24).

(S4) On the Home Screen select DiagnosticOn from the CATALOG menu.
Press ENTER to execute this command (Figure 3.25).

Note: The coefficient of linear correlation and coefficient of deter-
mination are computed using the function LinReg(a+bx) (or the
function LinReg(ax+b)) but displayed only if DiagnosticOn is in
effect. If DiagnosticOff is used, r and r2 will not be displayed. 3

(S5) On the Home Screen, select LinReg(a+bx) (in the STAT ; CALC

menu), and enter the lists containing the observations on the inde-
pendent variable (x) and the dependent variable (y) (Figure 3.26).
Press ENTER to execute this calculator function.

(S6) The results are displayed on the Home Screen (Figure 3.27). r =
.8394 and r2 = .7047. The scatter diagram and the coefficient of lin-
ear correlation indicate a strong positive correlation between push–
ups and sit–ups for students in the physical education class.

Note: The function LinReg(a+bx) also computes and displays the
coefficients for the regression line (a and b). 3 2

Regression analysis is used to find the equation of the line that best
describes the relationship between two variables. The equation for the
best line is called the regression equation and it may be used to pre-
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dict a value of the dependent variable based on a selected value of the
independent variable.

The calculator may be used to employ the method of least squares in
order to find the best–fitting line. The calculation of the coefficients of
the regression line and a hypothesis for a significant regression are built–
in calculator functions. Using optional function arguments and plotting
features it is possible to view the graph of the regression line and the
scatter diagram on the same set of axes, and to obtain predicted values.

Example: In a random sample of eight college women, each was asked
for her height (to the nearest inch) and her weight (to the nearest five
pounds). The data is given in the following table.

1 2 3 4 5 6 7 8

Height (x) 65 65 62 67 69 65 61 67

Weight (y) 105 125 110 120 140 135 95 130

(E1) Find an equation to predict the weight of a college woman based on
her height (the equation of the line of best fit).

(E2) Construct a graph of the regression line and the scatter diagram.
(E3) Determine the coefficient of linear correlation and the coefficient of

determination.
(E4) If a college woman is 65 inches, what is her predicted weight?

Calculator Solution:

(S1) Enter the height and weight for each woman in the lists TALL and
WEIGH, respectively.

(S2) Select the function LinReg(a+bx) (in the STAT ; CALC menu) and
enter three arguments: independent variable (TALL), dependent vari-
able (WEIGH), and a function variable (Y1, in the VARS ; Y-VARS ;
Function menu) for storing the regression equation (Figure 3.28).
Press ENTER to execute this command.

Figure 3.28:
LinReg(a+bx) function
and arguments.

Figure 3.29:
LinReg(a+bx) results.

Note:

(N1) The third argument in LinReg(a+bx) (calculator function vari-
able) is optional. The regression equation is always stored in
the statistics variable RegEQ.

(N2) Execute DiagnosticOn before LinReg(a+bx) so that r and r2

will be displayed. 3

(S3) The slope and the y–intercept for the equation of the line of best
fit, r, and r2 are displayed on the Home Screen (Figure 3.29). The
regression equation is ŷ = −186.4706 + 4.7059x, r = .7979 and
r2 = .6367.
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(S4) Select Plot1 settings (Figure 3.30) and appropriate WINDOW settings
(Figure 3.31). Press GRAPH to display the scatter diagram and the
graph of the equation of the line of best fit (Figure 3.32).

Note: Since the equation of the line of best fit was stored in the
function variable Y1, the graph of this line will automatically be
displayed (along with the scatter diagram). 3

(S5) In order to compute the predicted value, evaluate Y1 at 65 (Fig-
ure 3.33). The equation of the line of best fit predicts a weight of

Figure 3.30: Plot1

settings.

Figure 3.31: WINDOW

settings.

Figure 3.32: Scatter
diagram and regression
line.

Figure 3.33: Predicted
weight for 65 inches.

119.4129 for a college woman 65 inches tall. 2



Chapter 4

Probability

In a sample space containing sample points that are equally likely to
occur, the probability P(A) of an event A is the ratio of the number n(A)
of points that satisfy the definition of event A to the number n(S) of
sample points in the entire sample space:

P(A) =
n(A)

n(S)
.

In an equally likely outcome experiment, determining the probability of
an event A is often reduced to counting possibilities.

The Fundamental Counting Rule and the General Counting Rule
are basic counting techniques that follow from constructing a tree diagram
that shows all possible outcomes in an experiment.

A permutation is an ordered arrangement of a set of distinct objects.
That is, there is a first object, a second object, a third object, and so on;
and each object is distinctly different from the others. The permutation
formula is

nPr = n × (n − 1) × (n − 2) × · · · × (n − r + 1) =
n!

(n − r)!

where n is the total number of distinct objects and r is the number of
different objects selected. The TI–83 Plus has a built–in function for
finding permutations.

Example: A group of eight finalists in a ceramic art competition are to be
awarded five prizes; first through fifth. Three of the finalists win nothing.
How may different ways are there to award these five prizes?

35
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Calculator Solution:

(S1) Since the prizes are ordered, the answer to this example involves a
permutation. Enter 8 on the Home Screen. Press MATH and select
PRB ; nPr (Figure 4.1).

(S2) Enter 5 and press ENTER . The number of different ways of awarding
the five prizes is 6720 (Figure 4.2).

Note:

(N1) The TI–83 Plus function nPr accepts two arguments as input:
one before and one after the token. This is different from the
common idea for function and from most other TI–83 Plus
functions.

(N2) Permutations may also be computed on the Home Screen by
using the factorial symbol (!) (Figure 4.3). This symbol is also

Figure 4.1: MATH ; PRB
menu.

Figure 4.2: 8P5.

Figure 4.3:
Permutations computed
using the factorial
symbol.

in the MATH ; PRB menu. However, using the factorial symbol
may lead to overflow or round–off errors. 3 2

A combination is a set of distinct objects without regard to an arrange-
ment or an order. The membership of the set is all that matters. The
combination formula is

nCr =
n(n − 1)(n − 2) · · · (n − r + 1)

r!
=

n!

(n − r)!r!
=

nPr

r!

where n is the total number of distinct objects and r is the number of
objects selected. The TI–83 Plus has a built–in function for finding com-
binations.

Example: The Statistics Department at a large university has 27 members
and a committee of 5 is needed to review tenure applications. How many
different possible committees are there?

Calculator Solution:

(S1) Since the order or the arrangement of the committee members is
not important, the solution involves a combination. On the Home
Screen, enter the number of distinct Department members, 27.

(S2) Select MATH ; PRB ; nCr, and enter 5. The number of different com-
mittees of 5 is 80730 (Figure 4.4).

Note: Combinations may also be computed directly on the Home
Screen using the factorial symbol (Figure 4.5). 3 2

Figure 4.4: Combination
computed using nCr.

Figure 4.5: Combination
computed using the
factorial symbol.

Example: A Statistics Department has 30 members and a committee is
needed to review promotion applications. The committee is to be com-
posed of two co–chairpersons and three members. How many different
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possible committees are there?

Calculator Solution:

(S1) The problem is solved by considering two parts: selecting two co–
chairpersons and then the remaining committee members. Use the
Fundamental Counting Rule (m × n) where m is the number of
possible choices for the co-chairpersons and n is the number of three–
person committees.

(S2) The number of different promotion committees of size 5 with as-
signed co–chairpersons is

n(committees) = m × n = 30C2 × 28C3 = 1425060.

See Figure 4.6.

Figure 4.6: Product of
combinations.

Figure 4.7: Product of
combinations using the
factorial symbol.

Note: This product may also be computed directly on the Home
Screen (Figure 4.7). 3 2

Example: A small business has just receive shipment of 24 computers.
Suppose 4 of the machines are actually defective and that 6 machines will
be given to the Accounting Department.

(E1) How many different groups of 6 machines can the Accounting De-
partment receive?

(E2) Find the probability the Accounting Department will receive exactly
one defective machine.

(E3) Find the probability the Accounting Department will receive at least
3 defective machines.

Calculator Solution:

(S1) Since the order of selecting the computers is not important, the
solution involves a combination. The number of different groups of
6 computers selected from 24 is 24C6 = 134596 (Figure 4.8).

(S2) Since this is an equally likely outcome experiment, the probability
of selecting one defective computer (and 5 good computers) is

P(1 defective) =
(4C1)(20C5)

24C6
=

4 · 15504

134596
= .4608

See Figure 4.9.

(S3) The probability of selecting at least 3 defective computers is the
probability of selecting 3 or 4 defectives.

P(at least 3 defectives) =
(4C3)(20C3)

24C6
+

(4C4)(20C2)

24C6
= .0353

See Figure 4.10. 2

Figure 4.8: 24C6.

Figure 4.9: Probability
of selecting 1 defective.

Figure 4.10: probability
of selecting at least 3
defectives.
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Bayes’ Rule is an expanded form for conditional probabilities. This rule
may be used to compute reversed conditional probabilities from given
conditional and unconditional probabilities. Suppose A1, A2, . . . , An is a
collection of nonoverlapping events such that the union of these events is
the entire sample space, P(Ai) 6= 0, i = 1, 2, . . . , n. For any event B with
P(B) 6= 0

P(Ak | B) =
P(Ak ∩ B)

P(B)
=

P(Ak) · P(B | Ak)
n
∑

i=1

P(Ai) · P(B | Ai)
.

The program BAYES applies this rule to a collection of conditional and
unconditional probabilities.

Example: A company that manufactures shoes has three factories. Fac-
tory 1 produces 25% of the company’s shoes, Factory 2 produces 60%, and
Factory 3 produces 15%. One percent of the shoes produced by Factory 1
are mislabeled, 0.5% of those produced by Factory 2 are mislabeled, and
3% of those produced by Factory 3 are mislabeled. Suppose one pair of
shoes manufactured by this company is selected at random.

(E1) Find the probability the shoes are mislabeled.
(E2) Suppose the shoes are mislabeled. Find the probability they were

manufactured at Factory 2.

Calculator Solution:

(S1) The three Factories make up the nonoverlapping events. Let Ai be
the event Factory i manufactures the shoes. Enter the unconditional

probabilities P(Ai) in list FACTS (Figures 4.11).

(S2) Let B stand for the event of mislabeling a pair of shoes. The known

conditional probabilities are P(B | Ai). Enter these probabilities in

Figure 4.11: Known
unconditional and
conditional probabilities.

Figure 4.12: BAYES

input.

the list MISL (Figure 4.11).

(S3) Execute the program BAYES. Enter the list containing the uncondi-
tional probabilities at the first prompt and the list containing the
known conditional probabilities at the second prompt (Figure 4.12).

(S4) Probabilities associated with Bayes’ Rule are computed and placed
in the stat list editor. View the results using STAT ; EDIT ; EDIT
(Figure 4.13).

Here is an explanation of each list.

UNCON: P(Ai)
COND: P(B | Ai)
INTER: P(Ai ∩ B)
BAYES: P(Ai | B)
PRB: P(B) (first row only)

From the stat list editor, the probability of a mislabeled pair of shoes
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is P(B) = .01. Given a pair of mislabeled shoes, the probability is
was manufactured at Factory 2 is P(A2 | B) = .30. 2

Figure 4.13: Probabilities associated with Bayes’ Rule.
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Notes:



Chapter 5

Probability Distributions
(Discrete Variables)

A random variable is a function that assumes a unique numerical value
for each of the outcomes in the sample space of a probability experiment.
A random variable is discrete if it can assume a finite number or count-
ably infinite number of values. A random variable is continuous if its
set of possible values is an entire interval of numbers.

The probability distribution for a discrete random variable X is a dis-
tribution of the probabilities associated with each of the values of the ran-
dom variable. The probability function, or probability mass func-
tion (pmf), for X is the rule that assigns probabilities to the values of
the random variable.

Suppose X is a discrete random variable with probability function P(x).
The mean, or expected value of X is given by

µ = E(X) =
∑

all x

xi · P(xi) =
∑

[xP(x)].

The variance of X is given by

σ2 = E[(X − µ)2] =
∑

all x

(xi − µ)2 · P(xi) =
∑

[(x − µ)2P(x)].

The standard deviation of X is the positive square root of the variance:

σ =
√

σ2.

The calculator program DISCRV may be used to compute these three sum-
mary measures for a discrete random variable.

41
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Example: The number of ships to arrive at a harbor on any given day
is a random variable with probability distribution given below. Find the
mean, variance, and standard deviation for X .

x 10 11 12 13 14

P(x) 0.4 0.2 0.2 0.1 0.1

Calculator Solution:

(S1) This is an example involving a discrete random variable because the
number of values X assumes is finite. Enter the values for X in
the list VALS and the corresponding probabilities in the list PROBS

(Figure 5.1).

(S2) Execute the program DISCRV. Enter the list containing the values
and the list containing the probabilities (Figure 5.2).

(S3) The mean number of ships arriving is µ = 11.3 with variance σ2 =
1.81 and standard deviation σ = 1.35 (Figure 5.3). 2

Figure 5.1: Values and
probabilities for X.

Figure 5.2: Input lists.

Figure 5.3: Mean,
variance, and standard
deviation for X.

A binomial probability experiment consists of repeated trials that
possess the following properties:

(P1) There are n repeated independent trials.

(P2) Each trial has two possible outcomes (success, failure).

(P3) P(success) = p, P(failure) = q, and p + q = 1.

A binomial random variable is a discrete random variable that is the
count of the number of successful trials that occur in a binomial experi-
ment. If X is a binomial random variable with n trials and probability of
a success p, the binomial probability function is

P(x) =
(n

x

)

px qn−x =
n!

x!(n − x)!
px qn−x, for x = 0, 1, 2, . . . , n.

Some probability questions concerning a binomial random variable may be
solved using tables. More general problems may be solved using the TI–
83 Plus built–in functions for the probability function (binomialpdf) and
cumulative probability function (binomialcdf). Both are in the DISTR ;
DISTR menu. Every question concerning a binomial random variable may
be answered using cumulative probability. However, in some cases using
the probability function requires fewer calculations or keystrokes.

Example: A recent survey suggests 60% of all adults drink coffee in the
morning. Six adults are randomly selected and asked if they drink coffee in
the morning. The random variable X is the number of adults who respond
yes. Construct the probability distribution for the random variable X .
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Calculator Solution:

(S1) The general form of the calculator binomial probability function
is binomialpdf(n,p,x). If a value for x is omitted, the function
returns a list of probabilities for all possible values of the random
variable. The first row (in the resulting list) corresponds to X = 0,
the second row to X = 1, etc.

(S2) In order to make the probability distribution easier to interpret, first
enter the numbers 0–6 in the list X. Use the probability function to
find the probabilities and store the resulting list in PROBS (Figure

Figure 5.4: Binomial
probabilities computed
on the Home Screen and
stored in a list.

Figure 5.5: Binomial
probability distribution
in the stat list editor.

Figure 5.6: Cumulative
probabilities computed
on the Home Screen and
stored in a list.

Figure 5.7: Values of X,
probabilities, and
cumulative probabilities.

Figure 5.8: P(X = 10).

Figure 5.9: P(X ≥ 14)
= 1 − P(X ≤ 13).

5.4).

(S3) The probability distribution may be viewed in the stat list editor
(Figure 5.5). For example, the probability that 4 out of 6 sampled
adults drink coffee in the morning is .3110.

Note: The TI–83 Plus may also be used to create a table of binomial
cumulative probabilities and store the results in a list. See Figures
5.6 and 5.7 3 2

Example: There are many reasons for mortgage foreclosures. According to
a recent financial survey, disability causes 48% of all mortgage foreclosures.
Suppose 25 random mortgage foreclosures are audited by a large lending
institution. Find the probability of the following events.

(E1) Exactly 10 foreclosures are due to disability.

(E2) At least 14 are due to disability.

(E3) At most 12 are due to disability.

(E4) Between 9 and 15 (inclusive) are due to disability.

Calculator Solution:

(S1) Assume the properties of a binomial probability experiment hold.
Let X be the number of mortgage foreclosures due to disability out
of the 25 selected. X is a binomial random variable with n = 25
and p = .48. Use the probability function or cumulative probability
function to answer each question.

(S2) P(X = 10) = P(X ≤ 10) − P(X ≤ 9) = .1166 (Figure 5.8).

(S3) P(X ≥ 14) = 1 − P(X ≤ 13) = .2740 (Figure 5.9).

(S4) P(X ≤ 12) = .5801 (Figure 5.10).

(S5) P(9 ≤ X ≤ 15) = P(X ≤ 15) − P(X ≤ 8) = .8401 (Figure 5.11). 2

A Poisson random variable is often used to model the number of suc-
cesses in a fixed interval of time or within a specified region. The Poisson
distribution is used frequently to model rare events. If X is a Poisson
random variable with mean µ, the probability distribution for X is given
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by

P(x) =
µx e−µ

x!
, for x = 0, 1, 2, 3, . . ..

Problems concerning a Poisson random variable may be answered using
the TI–83 Plus built–in functions poissonpdf (probability function) and
poissoncdf (cumulative probability function). Both are in the DISTR ;Figure 5.10: P(X ≤ 12)

Figure 5.11:
P(9 ≤ X ≤ 15) =
P(X ≤ 15) − P(X ≤ 8).

DISTR menu.

Example: The number of people entering the emergency ward at a certain
hospital during any 24 hour period is a Poisson random variable X with
mean 5. Construct the first few rows of the probability distribution for
X .

Calculator Solution:

(S1) The general form of the calculator Poisson probability function is
poissonpdf(µ,x). The second argument must be included but may
be a calculator list.

(S2) Enter the numbers 0–6 in the list X. Use the probability function to

Figure 5.12: Poisson
probabilities computed
on the Home Screen and
stored in a list.

Figure 5.13: First few
rows of a Poisson
probability distribution
in the stat list editor.

find the probabilities and store the results in the list PROBS (Figure
5.12).

(S3) The first few rows of the probability distribution for X may be
viewed in the stat list editor (Figure 5.13). For example, P(X =
3) = .1404. 2

In repeated, independent trials, suppose the probability of a success is p
and the probability of a failure is q = 1 − p. The probability distribution
for the geometric random variable X , the trial number on which the
first success occurs, is given by

P(x) = pqx−1 , x = 1, 2, 3 . . . .

Problems concerning a geometric random variable may be answered using
the TI–83 Plus built–in functions geometpdf (probability function) and
geometcdf (cumulative probability function). Both are in the DISTR ;
DISTR menu.

Example: In a special promotion, a fast food restaurant claims 1 out of
every 20 game pieces wins a prize. Suppose game pieces are selected at
random. Find the probability of the following events.

(E1) The first winning piece is selected on the eighth try.

(E2) At least 10 pieces must be selected before the first winner is found.

(E3) The first winning piece is found in 4 or less tries.

Calculator Solution:

(S1) Let X be the the trial (game piece) on which the first success (win-
ner) occurs. X is a geometric random variable with p = 1/20 =
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.05. Use the probability function or cumulative probability func-
tion to answer each question. The calculator geometric probabil-
ity and cumulative probability functions take two arguments, the
probability of a success and a value of X : geometpdf(p,x) and

Figure 5.14: P(X = 9).

Figure 5.15: P(X ≥ 10)
= 1 − P(X ≤ 9).

Figure 5.16: P(X ≤ 4).

geometcdf(p,x).

(S2) P(X = 8) = P(X ≤ 8) − P(X ≤ 7) = .0349 (Figure 5.14).

(S3) P(X ≥ 10) = 1 − P(X ≤ 9) = .6302 (Figure 5.15).

(S4) P(X ≤ 4) = .1855 (Figure 5.16). 2
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Notes:



Chapter 6

Normal Probability
Distributions

A continuous random variable assumes values in an entire interval of real
numbers. The probability distribution function (or probability den-
sity function, pdf), f(x), for a continuous random variable X is defined
such that the probability that X takes on any value between a and b
(a ≤ b) is the area under the curve f(x), above the x axis, and between
the lines x = a and x = b.

The cumulative distribution function (cdf) for a continuous random
variable X is defined as

F (x) = P(X ≤ x) ,

and geometrically it is the area under the pdf to the left of x. The cdf for
a continuous random variable X may be used to answer any probability
question concerning X .

A normal random variable X has as its probability density function

f(x) =
1

σ
√

2π
· e−(x−µ)2/2σ2

where µ is the mean (−∞ < µ < ∞), σ is the standard deviation (σ >
0) and x can assume any real number. A standard normal random
variable, Z, has mean 0 (µ = 0) and standard deviation 1 (σ = 1).

Traditionally, probability questions concerning a normal random variable
are answered by standardizing. The probability statement is first trans-
formed, or converted, into an equivalent problem in the Z world. The
standard normal cumulative distribution function is then used to obtain
the desired probability. Standardization is not always necessary before
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using the TI–83 Plus to help solve a normal probability question. There
are four built–in functions in the DISTR menu to help solve problems and
illustrate concepts concerning a normal probability distribution.

Example: Use the TI–83 Plus to illustrate the normal probability distri-
butions with (1) µ = 40, σ = 3 and (2) µ = 40, σ = 8.

Calculator Solution:

(S1) The TI–83 Plus function normalpdf (in the DISTR ; DISTR menu)
is used to evaluate a normal probability distribution function at any
value x. It takes three arguments, x, µ, and σ. If µ and σ are
omitted, then the distribution is assume to be standard normal.

(S2) In the Y= editor, enter the two probability distribution functions
(Figure 6.1).

Figure 6.1: Normal
probability distribution
functions.

Figure 6.2: WINDOW

settings.

Figure 6.3: Graphs of
normal probability
distribution functions.

(S3) Select appropriate WINDOW settings (Figure 6.2).

(S4) Press GRAPH to display the probability distribution functions (Fig-
ure 6.3). The taller, more compact graph has σ = 3.

Note: The style of either graph may be changed in the Y= editor in
order to better identify each probability distribution. 3 2

Example: Assume Z is a standard normal random variable. Find the
probability that Z is

(E1) greater than 1.35.
(E2) less than −.52.
(E3) between −1.4 and 1.4.

Calculator Solution:

(S1) Use the built–in function normalcdf (in the DISTR ; DISTR menu)
to answer each question. This function takes four arguments: a, b,
µ, and σ and returns the probability that a normal random variable
with mean µ and standard deviation σ is between a and b. If µ and
σ are omitted, the distribution is assumed to be standard normal.
Wherever possible, two calculator solutions will be presented: the
first using the standard normal cumulative distribution function,
and the second without rewriting the problem in terms of cumulative
probability.

(S2) P(Z > 1.35) = 1 − P(Z ≤ 1.35) = .0885 (Figure 6.4).
Figure 6.4: P(Z > 1.35)
= 1 − P(Z ≤ 1.35).

Note:

(N1) -1E99 is considered the smallest number the TI–83 Plus can
work with, and 1E99 is the largest, effectively −∞ and ∞.

(N2) The calculator function ShadeNorm (in the DISTR ; DRAW menu)
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may be used to illustrate this probability, or area. This func-
tion takes four arguments: a, b, µ and σ. It draws a normal
probability distribution function with mean µ and standard de-
viation σ, shades the region between a and b, and computes the
area under the curve between a and b. If µ and σ are omitted, a
standard normal distribution is assumed. Figure 6.5 shows the
WINDOW settings and Figure 6.6 illustrates the use of ShadeNorm
on the Home Screen. Figure 6.7 shows the resulting graph and

Figure 6.5: WINDOW

settings.

Figure 6.6: ShadeNorm

used to illustrate
probability.

Figure 6.7: ShadeNorm

graph and calculation.

calculation. 3

(S3) P(Z < −.52) = .3015 (Figure 6.8).

(S4) P(−1.4 < Z < 1.4) = P(Z < 1.4) − P(Z ≤ −1.4) = .8385 (Figure
6.9). 2

Figure 6.8:
P(Z < −.52).

Figure 6.9:
P(−1.4 < Z < 1.4) =
P(Z < 1.4) −
P(Z ≤ −1.4).

Example: What is the 75th percentile for a standard normal random
variable?

Calculator Solution:

(S1) Find the value of a such that P(Z < a) = .75.

(S2) Use the function invNorm, located in the DISTR ; DISTR menu. This
function takes three arguments: p, µ, and σ. It returns a value x
such that P(X < x) = p, where X is a normal random variable
with mean µ and standard deviation σ. If µ and σ are omitted, a
standard normal distribution is assumed.

Figure 6.10: Inverse
cumulative probability
function for a standard
normal random variable.

Figure 6.11: ShadeNorm

graph and calculation to
confirm and illustrate
the solution.

(S3) Figure 6.10 shows the 75th percentile for a standard normal distri-
bution is .6745.

Note: Figure 6.11 illustrates the solution to this problem using
ShadeNorm. 3 2

Example: For a particular age group of adult males, the distribution of
cholesterol readings, in mg/dl, is normally distributed with a mean of 210
and a standard deviation of 15. Suppose an adult male in this age group
is selected at random. What is the probability his cholesterol reading will
be

(E1) less than 201?
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(E2) more than 216?
(E3) between 207 and 231?

Calculator Solution:

(S1) Use normalcdf to answer each question. Wherever possible, two

Figure 6.12:
P(X < 201).

Figure 6.13:
P(X > 216).

Figure 6.14:
P(207 < X < 231).

Figure 6.15: ShadeNorm

graph and calculation.

calculator solutions will be presented: the first by standardizing and
then using the standard normal cumulative probability function, and
the second without standardizing or rewriting the problem in terms
of cumulative probability.

(S2) P(X < 201) = P

(

X − 210

15
<

201− 210

15

)

= P(Z < −.6) = .2743

(Figure 6.12).

(S3) P(X > 216) = P

(

X − 210

15
>

216− 210

15

)

= P(Z > .4)

= 1 − P(Z ≤ .4) = .3446 (Figure 6.13).

(S4) P(207 < X < 231) = P

(

207− 210

15
<

X − 210

15
<

231− 210

15

)

= P(−.2 < Z < 1.4) = P(Z < 1.4) − P(Z ≤ −.2)

= .4985 (Figure 6.14).

Note: Figure 6.15 illustrates this probability using ShadeNorm.3 2

Example: The waiting time for a teller at a certain bank is approximately
normally distributed with a mean of 3.7 minutes and a standard deviation
of 1.4 minutes. Ninety–five percent of all customers entering the bank
speak to a teller within how many minutes?

Calculator Solution:

(S1) Let X be a normal random variable with µ = 3.7 and σ = 1.4. Find
the value of a such that P(X < a) = .95.

(S2) Use the function invNorm (in the DISTR ; DISTR menu). Figure 6.16
shows that 95% of all customers entering the bank will be waited on
within approximately 6 minutes.Figure 6.16: invNorm

with µ = 3.7, σ = 1.4.

Figure 6.17: ShadeNorm

illustrates the solution.

Note: Figure 6.17 illustrates the solution to this problem using
ShadeNorm. 3 2

The z–score is used throughout statistics in a variety of ways. The main
text uses z(α) to represent a specific z–score, or point on the measurement
axis for a standard normal random variable, such that there is α of the
area, or probability, to the right of z(α). Therefore, there is 1 − α of
the area to the left of z(α). The TI–83 Plus function invNorm (inverse
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cumulative probability for a normal random variable) may be used to find
a specific z–score.

Example: Find the numerical values of z(0.05) and z(0.60).

Calculator Solution:

(S1) P(Z > z(0.05)) = 0.05 =⇒ P(Z ≤ z(0.05)) = 1 − 0.05 = 0.95.

z(0.05) = 1.6449 (Figure 6.18).

Figure 6.18: z(0.05).

Figure 6.19: z(0.60).

(S2) P(Z > z(0.60)) = 0.60 =⇒ P(Z ≤ z(0.60)) = 1 − 0.60 = 0.40.

z(0.60) = −.2533 (Figure 6.19). 2

In certain cases a normal distribution may be used to approximate bino-
mial probabilities. The number of trials should be large and as a general
rule of thumb both np and n(1 − p) should be greater than or equal to
5. In addition, a continuity correction should be applied when using a
continuous (normal) random variable to estimate a discrete (binomial)
random variable.

Example: A drug manufacturer claims that only 5% of the patients using
a particular drug will experience adverse reactions. Doctors at a large
university hospital decide to use the drug on 250 randomly selected pa-
tients. Use the normal approximation to the binomial distribution to find
the probability that 15 or fewer of the 250 patients experience adverse
reactions.

Calculator Solution:

(S1) Let X be the number of patients who experience adverse reactions.
Assume X is a binomial random variable with n = 250 and p = .05.
The number of trials is large and np = (250)(.05) = 12.5 ≥ 5;
n(1 − p) = (250)(.95) = 237.5 ≥ 5.

(S2) µ = np = (250)(.05) = 12.5

σ2 = np(1 − p) = (250)(.05)(.95) = 11.875.

(S3) X is approximately distributed as a normal random variable with
mean 12.5 and standard deviation

√
11.875.

(S4) P(X ≤ 15) ≈ P(X ≤ 15.5) = P

(

X − 12.5√
11.875

≤ 15.5− 12.5√
11.875

)

= P(Z ≤ .8706) = .8080 (Figure 6.20).

Figure 6.20: Solution
using the normal
approximation.

Figure 6.21: Exact

probability using the
binomial distribution.

Note:

(N1) This problem may be solved on the TI–83 Plus without the
normal approximation by using the function binomcdf (Figure
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6.21).

(N2) On the TI–83 Plus, binompdf and binomcdf accept very large

values of n, almost eliminating the need to approximate a bi-
nomial probability.

(N3) Since p = .05 is far away from .5, the approximation is not as
good as one might expect for such a large value of n. 3 2

Note: A normal distribution may also be used to approximate a Poisson
random variable. The approximation may be used when the Poisson mean
exceeds 3. The approximation improves as µ increases and the continuity
correction should be applied. 3
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Sample Variability

A random sample of size n is chosen from a population so that every
possible sample of fixed size n has an equal probability of being selected.
Random sampling is one of the most widely used sampling techniques and
is a basic assumption in many statistical procedures.

A table of random numbers may be used to help select a random sample.
However, the TI–83 Plus has several built–in functions useful for gener-
ating random numbers and constructing a random sample. The function
rand returns a random number between 0 and 1, and randInt returns a
random integer between a lower and upper bound. randBin returns a ran-
dom number drawn from a specified binomial distribution and randNorm

generates a random number from a specified normal distribution. These
four functions accept an optional argument for number of trials or number

of simulations, and they are found in the MATH ; PRB menu.

Example: Use the calculator to draw a random sample of size 7 from
a normal probability distribution with a mean µ = 100 and standard
deviation σ = 20.

Calculator Solution:

(S1) On the Home Screen, select randNorm (in the MATH ; PRB menu)
and enter the mean, standard deviation, and sample size. Store the
resulting sample in list L1 (Figure 7.1).

(S2) The random sample is displayed on the Home Screen and may also
be viewed in the stat list editor (Figure 7.2). 2

Figure 7.1: Random
sample from a normal
distribution.

Figure 7.2: Random
sample viewed in the
stat list editor.

The calculator program RANDOM may be used to generate a random sample
of size n (n ≤ 999) from a set of integers between a lower bound and
an upper bound. The program also allows the option of sampling with
replacement.

53
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Example: Use the program RANDOM to simulate rolling five dice.

Calculator Solution:

(S1) Execute the program RANDOM. Input the lower bound, upper bound,
and sample size (Figure 7.3).

Figure 7.3: Lower
bound, upper bound,
and sample size.

Figure 7.4: Sample
without or with
replacement.

Figure 7.5: Five rolls in
the stat list editor.

(S2) Select the type of sample: with or without replacement. In this
example, each die may result in a 1–6, so the sampling is done with

replacement (Figure 7.4).

(S3) The 5 rolls are stored in the built–in list L1. The numbers may be
viewed on the Home Screen or in the stat list editor (Figure 7.5).
The resulting rolls are one 5, two 2’s, and two 6’s. 2

Example: Six voters are to be selected at random from a list of 524 reg-
istered voters in a small town. The voters will be asked their opinion on
a proposed new stop light in the center of town. Select a random sample
of 6 voters.

Calculator Solution:

(S1) Assume each voter in the town has been assigned a number from 1
through 524. Execute the program RANDOM.

(S2) Input the lower bound, upper bound, and sample size (Figure 7.6).

(S3) Select the type of sample: with or without replacement. In this
problem, each voter may be selected only once, so the sampling is
done without replacement (Figure 7.7).

(S4) The random sample of size 6 is stored in the list L1 and may be
viewed on the Home Screen or in the stat list editor (Figure 7.8).
Voters 23, 60, 365, 517, 332, and 164 should be selected and asked

Figure 7.6: Lower
bound, upper bound,
and sample size.

about the new stop light. 2

Figure 7.7: Sample
without replacement.

Figure 7.8: The 6 voter
numbers.

In order to use the numbers in a sample to estimate a parameter that
describes a population, the sample should be representative of the pop-
ulation. Even with a random sample, it is very unlikely that a sample
statistic would exactly equal the population characteristic, or parameter,
being estimated. The properties of a sample statistic are important in
order to judge how close the observed value is to the population char-
acteristic. The sampling distribution of a sample statistic is the
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distribution of values for a sample statistic obtained from repeated sam-
ples, all of the same size and all drawn from the same population.

Suppose the sample mean, x, is used to estimate a population mean, µ.
The sample mean is subject to variability, that is, x will vary from sample
to sample. x is really a specific value of a random variable. In some cases
the exact distribution of this random variable, the sample mean, may be
obtained. To investigate the sampling distribution of sample means
one might consider several sample means, construct a histogram, compute
the mean, variance, and standard deviation of the means, and compare
these values with the population parameters.

Example: Consider a population consisting of five equally likely integers:
1, 2, 3, 4, and 5. The population mean is µ = 3.00, variance σ2 = 2.00,
and standard deviation σ = 1.41. The table below lists 30 sample means,
each from a random sample of size 5, with replacement.

Sample Means

3.8 2.2 2.8 2.4 2.8 3.4 3.4 3.0 3.8 2.2

2.2 2.8 3.0 2.8 2.6 4.4 2.0 2.0 2.8 3.0

3.4 3.8 3.0 3.6 3.2 3.2 3.8 2.4 2.0 3.6

Construct a histogram of the means, find the mean, variance, and standard
deviation of the means and compare these statistics to the population
parameters.

Calculator Solution:

(S1) Enter the sample means in the list L1. Use 1-Var Stats to compute
the summary statistics for this data (Figure 7.9).

(S2) The sample mean of the means is 2.98, the sample standard devia-
tion is .6376, and the sample variance is (.6376)2 = .4065.

(S3) In the Plot1 menu select On, Type histogram, Xlist:L1, and Freq:1

(Figure 7.10).

(S4) Select appropriate WINDOW settings (Figure 7.11) and press GRAPH

to display the histogram (Figure 7.12).

(S5) The sample mean of the means is very close to the population mean.
The distribution of the sample means is much more compact than

Figure 7.9: 1-Var Stats

for sample means.

Figure 7.10: Plot1

settings.

Figure 7.11: WINDOW

settings.

Figure 7.12: Histogram
of sample means.the original distribution. 2

The Central Limit Theorem is one of the most important ideas in
statistics. Let X be the sample mean for a sample of size n from a
population with mean µ and standard deviation σ.

(C1) The mean of X is µ: µX = µ.
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(C2) The standard deviation of X is given by: σX = σ/
√

n .

(C3) If the sampled population is normal, then the sampling distribution
of X is normal for any sample size n.

(C4) The Central Limit Theorem states: if n is sufficiently large, the
sampling distribution of X is approximately normal regardless of
the sampled population.

Note:

(N1) The standard deviation of X , a measure of variability of the sam-
pling distribution of sample means, is called the standard error
of the mean: σX = σ/

√
n.

(N2) In most real–world applications, the population standard deviation
is unknown. An estimate of the standard error of the mean is:
sX = s/

√
n .

Example: The height of kindergarten children has a distribution with
mean 39 inches and a standard deviation of 3 inches. A random sample of
36 kindergarten students is selected and their heights are recorded. What
is the approximate probability that the sample mean for the 36 students
will be:

(E1) greater than 39.75 inches.
(E2) less than 37.5 inches.

Calculator Solution:

(S1) µX = 39 and σX =
3√
36

= .5 .

(S2) Since n is large, the distribution of X is approximately normal.

(S3) P(X > 39.75) = P

(

X − 39

.5
>

39.75− 39

.5

)

= P(Z > 1.5)

= 1 − P(Z ≤ 1.5) = .0668 (Figure 7.13).

Note: Figure 7.14 illustrates this probability with ShadeNorm. 3

(S4) P(X < 37.5) = P

(

X − 39

.5
<

37.5− 39

.5

)

= P(Z < −3.00) = .0013 (Figure 7.15).

Note: If the actual sample mean were 37.5 inches, this small prob-
ability suggests the claim of µ = 39 inches is false. 3 2

Figure 7.13:
P(X > 39.75).

Figure 7.14: ShadeNorm

used to illustrate
P(X > 39.75).

Figure 7.15:
P(X < 37.5).



Chapter 8

Introduction to Statistical
Inferences

A point estimate for a parameter is the value of the corresponding
sample statistic. Although a point estimate serves as a best guess, it does
not convey a sense of reliability, or confidence, or how close the estimate
is to the true population parameter. An interval estimate is a range of
numbers used to estimate the true value of a population parameter. The
values that bound this interval are statistics calculated from the sample
used as the basis for the estimation. The level of confidence (1 − α)
is the probability that the sample to be selected yields an interval that
includes the parameter being estimated. A confidence interval is an
interval estimate with a specified level of confidence.

If the sampled population is normal or the sample size is large, the formula
below may be used to construct a confidence interval for a population
mean. Let X be the sample mean for a sample of size n drawn from
a population with mean µ and standard deviation σ. A large sample
100(1− α)% confidence interval for µ has endpoints

x ± z(α/2) · σ√
n

.

Note:

(N1) z(α/2) is the confidence coefficient, the number of multiples of
the standard error needed to formulate an interval estimate of the
correct width to have a level of confidence of 1 − α. It is the point
on the measurement axis in a standard normal distribution so that
P(Z > z(α/2)) = α/2.

(N2) z(α/2) · (σ/
√

n) is one-half the width of the confidence interval, the
maximum error of estimate E.
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(N3) x − z(α/2) · (σ/
√

n): lower confidence limit (LCL),
x + z(α/2) · (σ/

√
n): upper confidence limit (UCL).

The endpoints of the confidence interval in the formula above may be
computed directly on the calculator Home Screen. Compute x and check
a table of common confidence coefficients for z(α/2), and evaluate the ap-
propriate arithmetic expression. However, the built–in calculator function
ZInterval (in the STAT ; TESTS menu) is more general and speeds up the
process for finding this confidence interval. Most of the TI–83 Plus confi-
dence interval functions work with summary statistics or a list containing
data.

Example: The student activities office at a local state university would like
to estimate the mean distance traveled to school by commuters. A random
sample of 100 commuting students was selected and the one–way distance
each commuted was obtained. The resulting sample mean distance was
10.22 miles. Find a 95% confidence interval for the mean one–way distance
traveled by commuter students at the school. Use σ = 6 miles.

Calculator Solution:

(S1) The population parameter of interest is the mean one–way distance
traveled by all commuting students. The distribution of the sampled
population is unknown, but the sample size is large (n = 100 ≥ 30).
The confidence interval is based on the standard normal random
variable.

(S2) Select STAT ; TESTS ; ZInterval. On the ZInterval input screen
highlight Stats (since only the summary statistics are known). En-
ter the values of σ, x, n, and the confidence level (C-Level) (Figure
8.1).

(S3) Position the blinking cursor on Calculate and press ENTER . The
interval estimate, x, and n are displayed on the Home Screen (Figure
8.2).

(S4) (9.044, 11.396) is a 95% confidence interval for the true mean one–
way distance traveled by commuting students. 2

Figure 8.1: ZInterval

input screen.

Figure 8.2: Confidence
interval for µ.

Example: A certain adjustment to a machine will change the length of the
parts produced but will not affect the standard deviation. The length of
the parts is normally distributed and the standard deviation is 0.5 mm.
After an adjustment is made, a random sample is taken to determine the
mean length of parts now being produced. The resulting lengths are:

75.0 76.0 75.0 77.0 75.4 76.3 77.0 74.9 76.5 75.8

Find a 99% confidence interval for the mean length of parts produced.
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Calculator Solution:

(S1) The population parameter of interest is the mean length of parts
produced and the distribution of the sampled population is normal.
The confidence interval is based on the standard normal random
variable.

(S2) Enter the data in the list PARTS (Figure 8.3).
Figure 8.3: PARTS data.

Figure 8.4: ZInterval

input screen.

Figure 8.5: Confidence
interval for µ.

(S3) On the ZInterval input screen highlight Data and use σ = 0.5.
Enter the list containing the data, the frequency of each observation,
and the confidence level (Figure 8.4).

(S4) Highlight Calculate and press ENTER . The interval estimate, x, s,
and n are displayed on the Home Screen (Figure 8.5).

(S5) (75.483, 76.297) is a 99% confidence interval for the mean length of
parts produced. 2

A hypothesis test is a formal process used to test the validity of a
statement, or claim, about a population parameter. Using information in
a sample, the claim is either rejected or not rejected.

There are four parts to every hypothesis test:

(P1) The null hypothesis, H0, is a statement that a population param-
eter has a specific value, assumed to be true.

(P2) The alternative hypothesis, Ha, is a statement about the same
population parameter, usually the complement of H0, all other val-
ues of the population parameter.

(P3) The test statistic, TS, is a random variable calculated from the
sample data, used as a basis for deciding whether or not to reject
the null hypothesis.

(P4) The critical region (CR), or rejection region (RR), is a set or
interval of numbers selected in such a way that if the value of the
test statistic lies in the critical region we reject the null hypothesis.

If the sampled population is normal or the sample size is large and σ
is known, the following procedure may be used to test a claim about a
population mean µ:

H0: µ = µ0

Ha: µ > µ0 , µ < µ0 , µ 6= µ0

TS: z∗ =
X − µ0

σ/
√

n

CR: z∗ ≥ z(α), z∗ ≤ −z(α), |z∗| ≥ z(α/2)
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Note:

(N1) When conducting this hypothesis test, select only one of the three
possible alternative hypotheses. There are two one–tailed tests and
one two–tailed test to choose from and three corresponding critical
regions.

(N2) α is the significance level of the test, the probability of committing
a type I error. The test statistic is significant if it lies in the critical
region.

(N3) z(α) is a critical value, a boundary value of the critical region.

(N4) The p–value is the probability that the test statistic could be the
value it is or a more extreme value (in the direction of the alternative
hypothesis) when the null hypothesis is true. 3

The value of the test statistic, z∗, may be computed on the Home Screen
by evaluating an appropriate arithmetic expression. However, the TI–83
Plus built–in hypothesis test procedures, in the STAT ; TESTS menu, are
more efficient and will be used to solve hypothesis test examples that
follow.

Example: The admissions office at a local hospital claims the mean age of
its patients is 42 years. In an attempt to check this claim, an insurance
provider selects a random sample of 120 patients and records their ages.
The sample mean is 44.2. Is there sufficient evidence to conclude the mean
age of patients at the hospital is larger than 42? Use α = .05 and σ = 20.

Calculator Solution:

(S1) This is a one–sided, or one–tailed, test about a population mean.
The sampled distribution is not known but the sample size is large.
The test statistic is z∗.

(S2) The four parts of the hypothesis test are:

H0: µ = 42 (≤)

Ha: µ > 42

TS: z∗ =
X − 42

σ/
√

n

CR: z∗ ≥ z(α) = z(0.05) = 1.645

(S3) In the STAT ; TESTS menu, select Z-Test. The TI–83 Plus Z-Test

input is either data in a list (Data) or summary statistics (Stats).
The summary statistics (and σ) are known in this example. High-
light Stats and enter values for µ0, σ, x, and n. Highlight the
one–sided upper–tailed alternative hypothesis, position the blinking
cursor on Calculate, and press ENTER (Figure 8.6).

Figure 8.6: Z-Test input
screen.
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(S4) The hypothesis test results are summarized on the Home Screen
(Figure 8.7).

(S5) Decision: do not reject H0.
Conclusion: The value of the test statistic, z∗ = 1.205, does not lie
in the critical region. There is no evidence to suggest the mean age
of patients at the hospital is greater than 42.

Note:

(N1) The calculator hypothesis test results screen also contains the
p–value, or observed significance level, for the test. The p–
value is also thought of as the smallest value α (smallest level
of significance) for which the null hypothesis would be rejected.
Here, P = .1141 > .05, which indicates there is no evidence in
favor of the alternative hypothesis.

(N2) From the Z-Test input screen, you may also Draw the results of
the hypothesis test. The TI–83 Plus will automatically set the
WINDOW, Draw a standard normal probability function, compute
and display the value of the test statistic z∗ and the p–value,
and shade the area under the curve corresponding to the p–
value (Figure 8.8). 3 2

Figure 8.7: Hypothesis
test results.

Figure 8.8: Hypothesis
test Draw results.

Example: A manufacturer claims the weight of a full box of its cereal is
normally distributed with mean 10 ounces and standard deviation 0.27
ounces. A random sample of 18 boxes is selected and the weight of each
box is given below.

Weights

9.71 10.07 9.20 9.81 10.29 10.01
9.93 9.78 10.10 9.40 9.63 9.66

10.02 9.88 10.00 9.95 9.91 9.73

Is there any evidence to suggest the mean weight of the cereal boxes is
less than 10 ounces? Use a 0.01 level of significance.

Calculator Solution:

(S1) This is a one–tailed test about a population mean. The sampled
distribution is normal and the standard deviation is known. The
test statistic is z∗.

(S2) The four parts of the hypothesis test are:

H0: µ = 10 (≥)

Ha: µ < 10

TS: z∗ =
X − 10

σ/
√

n
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CR: z∗ ≤ −z(α) = −z(0.01) = −2.33

(S2) Enter the data in the list BOXES.

(S3) Select STAT ; TESTS ; Z-Test. On the Z-Test input screen high-
light Data, set µ0 = 10, enter the standard deviation, use the list
BOXES, set the frequency to 1, and select the one–sided lower–tailed
alternative hypothesis (Figure 8.9).

Figure 8.9: Z-Test input
screen.

Figure 8.10: Hypothesis
test results.

Figure 8.11: Hypothesis
test Draw results.

(S4) Calculate the Z test. The hypothesis test results are displayed on
the Home Screen (Figure 8.10).

(S5) Decision: Reject H0.
Conclusion: The value of the test statistic, z∗ = −2.5491, lies in the
critical region (equivalently, P = .0054 < .01). There is evidence to
suggest the mean weight of the cereal boxes is less than 10 ounces.

Note: The Draw hypothesis test results are shown in Figure 8.11.
3 2



Chapter 9

Inferences Involving One
Population

Inferences about a population mean µ are based on the sample mean x and
information obtained from the sampling distribution of sample means. If
the population standard deviation, σ, is known, and the sampled popula-
tion is normal or the sample size is sufficiently large, then inferences are
based on the standard normal distribution. The test statistic is z∗.

If the population standard deviation, σ, is unknown, the standard error
σ/

√
n is also unknown. In this case the sample standard deviation, s is

used as a point estimate for σ, and s/
√

n is used as an estimate for the
standard error of the mean. Inferences about a population mean are based
on the Student’s t statistic.

Suppose a random sample of size n is selected from a normal population.
If the population standard deviation is unknown, a 100(1−α)% confidence
interval for µ has endpoints

x ± t(n − 1, α/2) · s√
n

.

Note:

(N1) t(n − 1, α/2) is the critical value in the t distribution with n − 1
degrees of freedom.

(N2) This confidence interval may be constructed using the TI–83 Plus
calculator function TInterval, in the STAT ; TESTS menu.

(N3) As the sample size, n, increases, t(n − 1, α/2) → z(α/2). 3

Example: Gasoline pumped from a supplier’s pipeline is supposed to have
a specified octane rating. On fourteen randomly selected days, a sample of
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gasoline was analyzed and the octane rating recorded. The data is given
below.

Octane Ratings

88.6 86.4 87.2 88.4 87.2 87.6 86.8
86.1 87.4 87.3 86.4 86.6 87.1 88.3

Suppose the octane ratings have a normal distribution. Find a 98% con-
fidence interval for the true mean octane rating of gasoline from the sup-
plier’s pipeline.

Calculator Solution:

(S1) The population parameter of interest is the mean octane rating of
gasoline from the supplier’s pipeline. The distribution of the sam-
pled population is assumed normal and σ is unknown. The confi-
dence interval is based on the t distribution.

(S2) Enter the data in the list OCTAN.

(S3) Select STAT ; TESTS ; TInterval. On the TInterval input screen
highlight Data, select the list OCTAN, set the frequency to 1, and
enter the confidence level (Figure 9.1).

(S4) Position the blinking cursor on Calculate and press ENTER . The
interval estimate, x, s, and n are displayed on the Home Screen
(Figure 9.2).

(S5) (86.694, 87.792) is a 98% confidence interval for the true mean octane
rating of gasoline from the supplier’s pipeline. 2

Figure 9.1: TInterval

input screen.

Figure 9.2: Confidence
interval for µ.

Note:

(N1) The function TInterval may also be used to construct a confidence
interval if only summary statistics are known (and the sampled dis-
tribution is normal). Figure 9.3 shows a typical TInterval input
screen for Inpt:Stats.

(N2) In the DISTR ; DISTR menu the function tpdf returns a value of the
probability distribution function for a t distribution with specified
(ν) degrees of freedom; function with arguments: tpdf(x,ν). Fig-
ure 9.4 shows the graph of the probability distribution function for
a t random variable with 11 degrees of freedom (WINDOW settings:
[−4, 4]× [0, .4]).

(N3) The function tcdf computes the probability of selecting a value be-
tween a lower (a) and upper (b) bound for a t distribution with speci-
fied (ν) degrees of freedom; function with arguments: tcdf(a,b,ν).
Figure 9.5 shows the probability of selecting a value between −.5
and 1.2 from a t distribution with 17 degrees of freedom is .5650.

(N4) In the DISTR ; DRAW menu the function Shade t draws the probabil-

Figure 9.3: TInterval

input screen if only
summary statistics are
known.

Figure 9.4: A t

probability function.

Figure 9.5: Use of tcdf

to compute probability.
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ity function for a t distribution with specified (ν) degrees of freedom,
shades the area between a lower (a) and upper (b) bound, and com-
putes the shaded area; function and arguments: Shade t(a,b,ν).
Figure 9.6 illustrates the use of Shade t to visualize the probability
found in note (N3).

(N5) As the degrees of freedom increase, the t distribution approaches
a standard normal distribution. Figure 9.7 illustrates this concept.

Figure 9.6: Use of
Shade t to illustrate
(and compute)
probability.

Figure 9.7: The t

distribution approaches
a standard normal
distribution.

The top, dotted graph is of the standard normal distribution func-
tion. The remaining two graphs are the probability functions for a
t distribution with 2 and 7 degrees of freedom. 3

Suppose a random sample of size n is selected from a normal population.
If the population standard deviation is unknown, the t statistic is used
to complete a hypothesis test about a population mean. The calculator
function T-Test (in the STAT ; TESTSmenu) may be used with data stored
in a list or with summary statistics.

The hypothesis test procedure:

H0: µ = µ0

Ha: µ > µ0 , µ < µ0 , µ 6= µ0

TS: t∗ =
X − µ0

S/
√

n

CR: t∗ ≥ t(n − 1, α), t∗ ≤ −t(n − 1, α), |t∗| ≥ t(n − 1, α/2)

Example: Homes in a nearby college town have a mean value of $88,950.
It is assumed that homes closer to the college have a higher value. To
test this theory, a random sample of 12 homes is selected from the college
area. Their mean valuation is $92,460 with standard deviation $5,200.
Is there any evidence to suggest the mean value of homes in the college
area is higher than the nearby town? Complete the hypothesis test using
α = .05 and assume prices are normally distributed.

Calculator Solution:

(S1) This is a one–sided upper–tailed test about a population mean. The
sampled distribution is assumed normal and σ is unknown. The test
statistic is t∗.

(S2) The four parts of the hypothesis test are:

H0: µ = 88950 (≤)

Ha: µ > 88950

TS: t∗ =
X − 88950

S/
√

n
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CR: t∗ ≥ t(n − 1, α) = t(11, .05) = 1.80

(S3) In the STAT ; TESTS menu, select T-Test. Since summary statis-
tics are known, highlight Stats. Enter values for µ0, x, sx (sample
standard deviation), and n. Select the one–sided upper–tailed alter-
native hypothesis and Calculate the results (Figure 9.8).

(S4) The hypothesis test results are shown in Figure 9.9.
Figure 9.8: T-Test input
screen.

Figure 9.9: Hypothesis
test results.

Figure 9.10: Hypothesis
test Draw results.

(S5) Decision: reject H0.
Conclusion: The value of the test statistic, t∗ = 2.3383, lies in the
critical region (equivalently, P = .0196 < .05). There is evidence to
suggest the mean valuation of homes in the vicinity of the college is
higher than $88,950.

Note: The Draw results are shown in Figure 9.10. 3 2

The observed (sample) binomial probability, or sample proportion, p′, may
be used as a point estimate for a binomial parameter p, P(success). If the
sample size is greater than 20 but less than 10% of the population, and
the products np′ and n(1 − p′) are greater than 5, an interval estimate
may be constructed using the standard normal distribution.

A 100(1−α)% confidence interval for a binomial parameter p has endpoints

p′ ± z(α/2) ·
√

p′ q′

n

where z(α/2) is the critical value from a standard normal distribution, p′ is
the sample binomial probability, and q′ = 1− p′. The calculator function
1-PropZInt (in the STAT ; TESTS menu) may be used to compute this
interval estimate for p.

Example: In a sample of 200 randomly selected residents, only 45 favored
a proposed Good Samaritan law. Construct a 99% confidence interval for
the true proportion of all residents who support the proposed new law. Is
it reasonable to conclude that at least 35% of the residents support the
proposed law?

Calculator Solution:

(S1) The parameter of interest is the proportion of residents who support
the proposed law. The sample size is large; the confidence interval
for p is appropriate.

(S2) In the 1-PropZInt input screen, enter values for x (the number of
successes), n, and the confidence level (Figure 9.11).

(S3) Calculate the confidence interval. The interval estimate, sample
binomial probability, p̂, and number of trials are displayed on the
Home Screen (Figure 9.12).

Figure 9.11: 1-PropZInt

input screen.

Figure 9.12: Confidence
interval for p.
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(S4) (.1489, .3011) is a 99% confidence interval for the true proportion of
residents who favor the new law. .35 is not in the interval and is
more than the entire interval of numbers. This suggests that less
than 35% of all residents support the new law. 2

The sample binomial probability may also be used to test a hypothesis
about a binomial parameter p. If the sample size is large and the sample
binomial probability is approximately normal, a hypothesis test about p
is based on the standard normal distribution. The built–in calculator
procedure 1-PropZTest produces Calculate and Draw results.

Hypothesis test procedure about a binomial parameter p:

H0: p = p0

Ha: p > p0 , p < p0 , p 6= p0

TS: z∗ =
p′ − p0
√

p0 q0

n

CR: z∗ ≥ z(α), z∗ ≤ −z(α), |z∗| ≥ z(α/2)

Example: Many people sleep–in on the weekends to make up for short

nights during the work week. The Better Sleep Council reports that 61%
of us get more than seven hours of sleep per night on the weekend. A
random sample of 350 adults found that 235 had more than seven hours
each night last weekend. At the .05 level of significance, does this evi-
dence show that more than 61% get seven or more hours per night on the
weekend?

Calculator Solution:

(S1) This is a one–sided upper–tailed test about a binomial parameter.
The sample size is large and the sample binomial probability is as-
sumed normal. The test statistic is z∗.

(S2) The four parts of the hypothesis test are:

H0: p = .61 (≤)

Ha: p > .61

TS: z∗ =
p′ − p0
√

p0 q0

n

CR: z∗ ≥ z(α) = z(.05) = 1.645

(S3) Select STAT ; TESTS ; 1-PropZTest. Enter values for p0, x (the
number of successes), and n. Select the one–sided upper–tailed al-
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ternative hypothesis and Calculate the results (Figure 9.13).

(S4) The hypothesis test results are displayed on the Home Screen (Figure
9.14). p̂ is the sample binomial probability.

(S5) Decision: reject H0.
Conclusion: The value of the test statistic, z∗ = 2.3562, lies in the
critical region (equivalently, P = .0092 < .05). There is evidence to
suggest that more than 61% of us get seven or more hours of sleep
per night on the weekend.

Note: The Draw results are shown in Figure 9.15. 3 2

Figure 9.13:
1-PropZTest input
screen.

Figure 9.14: Hypothesis
test results.

Figure 9.15: Hypothesis
test Draw results.

The sample variance s2 may be used as a point estimate for a population
variance σ2. If a sample of size n is drawn from a normal population, an
interval estimate may be constructed based on the chi–square distribution.
A 100(1 − α)% confidence interval for a population variance σ2 is given
by

(n − 1)s2

χ2(n − 1, α/2)
< σ2 <

(n − 1)s2

χ2(n − 1, 1 − α/2)
.

χ2(n − 1, α/2) and χ2(n − 1, 1 − α/2) are critical values from a chi–
square distribution with n−1 degrees of freedom. The calculator program
CHISQINT may be used to compute this interval estimate for σ2. It will
find the critical values and construct a confidence interval from summary
statistics or from data stored in a calculator list.

Example: A commercial farmer harvests his entire field of vegetables at
one time. Therefore, he would like to plant a variety of green beans

Figure 9.16: Input is
summary statistics.

Figure 9.17: Sample
variance, sample size,
and confidence level.

Figure 9.18: Confidence
interval for σ2 .

that mature all at one time (small variance between maturity times of
individual plants). A seed company has developed a new hybrid strain of
green beans that it believes to be better for the commercial farmer. A
random sample of 30 plants of the new hybrid showed a sample variance
of 2.75 days. Find a 95% confidence interval for the variance of maturity
times. Assume that maturity time is normally distributed.

Calculator Solution:

(S1) The population parameter of interest is the variance of maturity
times for green bean plants. The distribution of the sampled pop-
ulation is assumed normal. The confidence interval is based on the
χ2 distribution.

(S2) Execute the program CHISQINT. At the INPUT? prompt, select the
STATS option (Figure 9.16). Enter the sample variance, sample size,
and confidence level (Figure 9.17).

(S3) The endpoints for the confidence interval are displayed on the Home
Screen (Figure 9.18). (1.7442, 4.9698) is a 95% confidence interval
for the population variance of maturity times. 2
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Note:

(N1) In the DISTR ; DISTR menu the function χ2pdf returns a value of the
probability density function for a chi–square distribution with spec-
ified (ν) degrees of freedom; function with arguments χ2pdf(x,ν).
Figure 9.19 shows the graph of the probability density function for

Figure 9.19: A
chi–square probability
density function.

Figure 9.20: Use of
χ2cdf to compute
probability.

Figure 9.21: Use of
Shadeχ2 to illustrate
(and compute)
probability.

a chi–square random variable with 7 degrees of freedom (WINDOW
settings: [0, 20]× [0, .13]).

(N2) The function χ2cdf computes the probability of selecting a value
between a lower (a) and upper bound (b) for a chi–square distribu-
tion with specified (ν) degrees of freedom; function with arguments
χ2cdf(a,b,ν). Figure 9.20 shows the probability of selecting a value
between 3.4 and 9.7 from a chi–square distribution with 14 degrees
of freedom is .2144.

(N3) In the DISTR ; DRAW menu the function Shadeχ2 draws the prob-
ability density function for a chi–square distribution with specified
(ν) degrees of freedom, shades the area between a lower (a) and
upper (b) bound, and computes the shaded area; function and argu-
ments: Shadeχ2(a,b,ν). Figure 9.21 illustrates the use of Shadeχ2

to visualize the probability found in note (N2). 3

If the sampled population is normal, a hypothesis test about a population
variance is based on a chi–square distribution. The calculator program
CHISQTST may be used to conduct this test using data stored in a list or
with summary statistics.

Hypothesis test procedure about a population variance σ2:

H0: σ2 = σ2
0

Ha: σ2 > σ2
0 , σ2 < σ2

0 , σ2 6= σ2
0

TS: χ2∗ =
(n − 1)S2

σ2
0

CR: χ2∗ ≥ χ2(n − 1, α), χ2∗ ≤ χ2(n − 1, 1− α),

χ2∗ ≤ χ2(n − 1, 1 − α/2) or χ2∗ ≥ χ2(n − 1, α/2)

Example: An automobile manufacturer claims the miles per gallon for
a specially designed high mileage, two–seat model has mean 40.5 with
variance 12.3. A random sample of 15 such cars was obtained and tested.
The observed miles per gallon are given in the table below.

Miles Per Gallon

37.0 38.0 42.5 45.0 34.0 32.0 36.0 35.5
38.0 42.5 40.0 42.5 35.0 30.0 37.5
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Is there any evidence to suggest the variance in miles per gallon is greater
than 12.3? Complete the hypothesis test using α = .05 and miles per
gallon distribution is normal.

Calculator Solution:

(S1) This is a one–sided upper–tailed test about a population variance.
The sampled distribution is assumed normal and the test statistic

Figure 9.22: Input from
data in a list.

Figure 9.23: List name
and σ2

0
.

Figure 9.24: Alternative
hypothesis.

Figure 9.25: Hypothesis
test results.

is χ2∗.

(S2) The four parts of the hypothesis test are:

H0: σ2 = 12.3 (≤)

Ha: σ2 > 12.3

TS: χ2∗ =
(n − 1)S2

12.3

CR: χ2∗ ≥ χ2(n − 1, α) = χ2(14, .05) = 23.7

(S3) Enter the data in the list MILES and execute the program CHISQTST.
Select DATA at the INPUT? prompt (Figure 9.22).

(S4) Enter the name of the list containing the data and the value for σ2
0

(Figure 9.23), and select the alternative hypothesis (Figure 9.24).

(S5) The hypothesis test results are displayed on the Home Screen (Figure
9.25).

(S6) Decision: do not reject H0.
Conclusion: The value of the test statistic, χ2∗ = 20.2358, does not
lie in the critical region (equivalently, P = .1229 > .05). There is no
evidence to suggest the variance in miles per gallon is greater than
12.3. 2



Chapter 10

Inferences Involving Two
Populations

The TI–83 Plus has built–in hypothesis test procedures for comparing
two population means (and for constructing confidence intervals for the
difference between two means). The following notation will be used to
describe these (and other) tests.

Parameter Population 1 Population 2

Population mean µ1 µ2

Population variance σ2
1 σ2

2

Population standard deviation σ1 σ2

Statistic Sample 1 Sample 2

Sample size n1 n2

Sample mean x1 x2

Sample variance s2
1 s2

2

Sample standard deviation s1 s2

Suppose both populations are normally distributed and the data is paired

(dependent samples). A 100(1−α)% confidence interval for µd = µ1 −µ2

has endpoints

d ± t(n − 1, α/2) · sd√
n

where d is the sample mean of the differences, sd is the sample standard de-
viation of the differences, and n is the sample size (for both samples). This
confidence interval is constructed by first computing the differences, then
using the TI–83 Plus function (one–sample) TInterval (in the STAT ;
TESTS menu). This function accepts data stored in a list or summary
statistics.

71
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The hypothesis test about a mean difference:

H0: µd = ∆0

Ha: µd > ∆0 , µd < ∆0 , µd 6= ∆0

TS: t∗ =
D − ∆0

Sd/
√

n

CR: t∗ ≥ t(n − 1, α) , t∗ ≤ −t(n − 1, α) , |t∗| ≥ t(n − 1, α/2)

The calculator function (one–sample) T-Test (in the STAT ; TESTS menu)
may be used to conduct this hypothesis test. Data or summary statistics
may be used.

Example: Salt–free diets are often prescribed for people with high blood
pressure. The data in the table below was obtained from an experiment
designed to estimate the reduction in diastolic blood pressure as a result
of following a salt–free diet for two weeks. Assume diastolic readings are
normally distributed.

Diastolic Readings

Before 93 106 87 92 102 95 88 110

After 92 102 89 92 101 96 88 105

Find a 98% confidence interval for the mean reduction in diastolic blood
pressure.

Calculator Solution:

(S1) Diastolic readings are assumed normal and the samples are depen-
dent. The confidence interval is based on the t distribution.

(S2) Enter the data in the lists BEFOR and AFTER. Compute the differences
on the Home Screen and store the results in the list DIFFS (Figures
10.1, 10.2).

(S3) Select STAT ; TESTS ; TInterval. On the TInterval input screen
highlight Data, select the list DIFFS, set the frequency to 1, and
enter the confidence level (Figure 10.3).

(S4) Position the blinking cursor on Calculate and press ENTER . The
interval estimate, the sample mean difference (x), the sample stan-
dard deviation for the differences (Sx), and n are displayed on the
Home Screen (Figure 10.4).

(S5) (−1.534, 3.5337) is a 98% confidence interval for the mean difference
in diastolic readings. 2

Figure 10.1: Calculation
of differences.

Figure 10.2: Before,
after, and difference in
diastolic readings.

Figure 10.3: TInterval

input screen.

Figure 10.4: Confidence
interval for µd.

Example: To test the effect of a physical fitness course on one’s physical
ability, the number of sit–ups that a person could do in one minute, both
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before and after the course, were recorded. Ten people were randomly
selected and the difference data (before − after) is summarized by

n = 10 , d = −7.00 , sd = 5.7927 .

Is there any evidence to suggest an improvement in physical ability (a
greater number of sit–ups in one minute)? Use α = 0.01.

Calculator Solution:

(S1) The number of sit–ups in one minute is assumed to be normally
distributed and the samples are dependent. The test statistic is t∗.

(S2) The four parts of the hypothesis test are:

H0: µd = 0 (≥)

Ha: µd < 0

TS: t∗ =
D − 0

Sd/
√

n

CR: t∗ ≤ −t(n − 1, α) = −t(9, 0.01) = −2.82

(S3) In the STAT ; TESTS menu, select T-Test. Since summary statistics
are known, highlight Stats. Enter values for µ0 (µd), x (d), Sx (sd),
and n. Select the one–sided lower–tailed alternative hypothesis and
Calculate the results (Figure 10.5).

(S4) The hypothesis test results are shown in Figure 10.6.

(S5) Decision: reject H0.
Conclusion: The value of the test statistic, t∗ = −3.8214, lies in the
critical region (equivalently, P = .0020 < .01). There is evidence to
suggest the fitness course has improved physical ability.

Note: The Draw results are shown in Figure 10.7. 3 2

Figure 10.5: T-Test

input screen.

Figure 10.6: Hypothesis
test results.

Figure 10.7: Hypothesis
test Draw results.

Suppose both populations are normally distributed, the samples are inde-
pendent, and no assumptions are made about the population variances.
A 100(1− α)% confidence interval for µ1 − µ2 has endpoints

(x1 − x2) ± t(df, α/2) ·

√

s2
1

n1
+

s2
2

n2

where df is the approximate number of degrees of freedom,

df =

(

s2

1

n1

+
s2

2

n2

)2

(s2

1
/n1)2

n1−1 +
(s2

2
/n2)2

n2−1

.

The calculator function 2-SampTInt may be used to construct this confi-
dence interval. The input may be data stored in lists or summary statis-
tics.
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The hypothesis test procedure:

H0: µ1 − µ2 = ∆0

Ha: µ1 − µ2 > ∆0 , µ1 − µ2 < ∆0 , µ1 − µ2 6= ∆0

TS: t∗ =
(X1 − X2) − ∆0

√

S2
1

n1
+

S2
2

n2

CR: t∗ ≥ t(df, α) , t∗ ≤ −t(df, α) , |t∗| ≥ t(df, α/2)

The calculator function 2-SampTTestmay be used to conduct this hypoth-
esis test. The input may be data stored in lists or summary statistics.

Example: The heights (in inches) of 20 randomly selected women and
30 randomly selected men were independently obtained from the student
body of a certain college in order to estimate the difference in their mean
heights. The sample information is given in the following table.

Sample Number Mean Standard Deviation

Female 20 63.8 2.18

Male 30 69.8 1.92

Assume the heights are approximately normally distributed for both pop-
ulations. Find a 95% confidence interval for the difference between the
mean heights.

Calculator Solution:

(S1) Both populations are assumed to be approximately normal, and the
samples were random and independently selected. No assumptions
are made about the population variances. The confidence interval
for the difference between the mean heights is based on the t distri-
bution.

(S2) Select STAT ; TESTS ; 2-SampTInt. Highlight Stats and enter the
summary statistics for each group. Enter the level of confidence
and highlight No for pooled variance (no assumptions about the
population variances). Calculate the confidence interval (Figure
10.8).

(S3) The confidence interval and summary statistics are displayed on the
Home Screen (Figure 10.9).

(S4) (−7.216,−4.784) is a 95% confidence interval for the difference be-
tween the mean heights (female − male). 2

Figure 10.8: 2-SampTInt

input screen.

Figure 10.9: Confidence
interval for µ1 − µ2.

Example: A study is designed to compare the academic success of college
students who belong to fraternal organizations with the academic success
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of those who do not belong to fraternal organizations. The reason for
the comparison centers on the recent concern that fraternity members,
on the average, perform at a lower academic level than the nonfraternal
students. Cumulative grade–point average is used to measure academic
success. Random samples of size 40 are taken from each population. The
data is given in the following table.

Sample Number Mean Standard Deviation

Fraternity members 40 2.03 0.69

Nonmembers 40 2.21 0.59

Complete a hypothesis test using α = 0.05. Assume grade–point averages
for both groups are approximately normally distributed.

Calculator Solution:

(S1) Both populations are assumed to be approximately normally dis-
tributed. The samples are independent and no assumptions are
made about the population variances. The test statistic is t∗.

(S2) The four parts of the hypothesis test are:

H0: µ1 − µ2 = 0 (≥)

Ha: µ1 − µ2 ≤ 0

TS: t∗ =
(X1 − X2) − 0

√

S2
1

n1
+

S2
2

n2

CR: t∗ ≤ −t(df, α/2) = −t(76, 0.025) ≈ −1.99

(S3) Select STAT ; TESTS ; 2-SampTTest. Highlight Stats and enter the
summary statistics for each group. Select the alternative hypothesis
and highlight No for pooled variance (no assumptions about the
population variances). Highlight Calculate and press ENTER to
conduct the hypothesis test (Figure 10.10).

(S4) The hypothesis test results are displayed on the Home Screen (Figure
10.11).

(S5) Decision: do not reject H0.
Conclusion: The value of the test statistic, t∗ = −1.2645, does not
lie in the critical region (equivalently, P = .1049 > .05). There is no
evidence to suggest fraternity members perform at a lower academic
level than nonmembers.

Note: The Draw results are shown in Figure 10.12. 3 2

Figure 10.10:
2-SampTTest input
screen.

Figure 10.11:
Hypothesis test results.

Figure 10.12:
Hypothesis test Draw

results.
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Note:

(N1) Suppose both populations are assumed to be normally distributed,
the samples are independent, and the population variances are as-
sumed equal. A 100(1 − α)% confidence interval for µ1 − µ2 has
endpoints

(x1 − x2) ± t(n1 + n2 − 2, α/2) · sp

√

1

n1
+

1

n2

where sp is the pooled estimate of the common standard deviation,

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
.

The calculator function 2-SampleTInt (in the STAT ; TESTS menu)
may be used to construct this interval estimate. Highlight Yes for
pooled variance.

The hypothesis test procedure:

H0: µ1 − µ2 = ∆0

Ha: µ1 − µ2 > ∆0 , µ1 − µ2 < ∆0 , µ1 − µ2 6= ∆0

TS: t∗ =
(X1 − X2) − ∆0

Sp

√

1

n1
+

1

n2

CR: t∗ ≥ t(n1 + n2 − 2, α) , t∗ ≤ −t(n1 + n2 − 2, α) ,
|t∗| ≥ t(n1 + n2 − 2, α/2)

The calculator function 2-SampTTest may be used to conduct this
hypothesis test. Highlight Yes for pooled variance.

(N2) Suppose

(A1) Both populations are assumed normally distributed, the sam-
ples are independent, and both population variances are known,
or

(A2) Both samples are large, the samples are independent, and both
population variances are known.

A 100(1− α)% confidence interval for µ1 − µ2 has endpoints

(x1 − x2) ± z(α/2) ·

√

σ2
1

n1
+

σ2
2

n2
.

The calculator function 2-SampZInt (in the STAT ; TESTS menu)
may be used to construct this interval. This function accepts data
stored in lists or summary statistics.
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The hypothesis test procedure:

H0: µ1 − µ2 = ∆0

Ha: µ1 − µ2 > ∆0 , µ1 − µ2 < ∆0 , µ1 − µ2 6= ∆0

TS: z∗ =
(X1 − X2) − ∆0

√

σ2
1

n1
+

σ2
2

n2

CR: z∗ ≥ z(α) , z∗ ≤ −z(α) , |z∗| ≥ z(α/2)

The calculator function 2-SampZTest (in the STAT ; TESTS menu)
may be used to conduct this hypothesis test. This function accepts
data stored in lists or summary statistics. 3

The TI–83 Plus also has a built–in function for constructing a confidence
interval for the difference between two proportions and a hypothesis test
function for comparing two proportions. The following additional notation
will be used to describe and illustrate these procedures.

(N1) p1, p2: population proportions for population 1 and 2, respectively.

(N2) X1, X2: number of successes in sample 1 and 2, respectively.

(N3) p′1, p′2: sample proportions for sample 1 and 2, respectively.

(N4) q′1 = 1 − p′1, q′2 = 1 − p′2.

Suppose random samples are selected independently from two populations
and that each sample is large enough so that the distribution for the
difference between the two sample proportions is approximately normal.
A 100(1− α)% confidence interval for p1 − p2 has endpoints

(p′1 − p′2) ± z(α/2)

√

p′1q
′
1

n1
+

p′2q
′
2

n2
.

The TI–83 Plus function 2-PropZInt may be used to construct this in-
terval estimate.

The hypothesis test procedure:

H0: p1 − p2 = 0

Ha: p1 − p2 > 0 , p1 − p2 < 0 , p2 − p2 6= 0

TS: z∗ =
p′1 − p′2

√

(p′p)(q
′
p)

(

1

n1
+

1

n2

)

CR: z∗ ≥ z(α) , z∗ ≤ −z(α) , |z∗| ≥ z(α/2)
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where p′p is an estimate of the common population proportion:

p′p =
X1 + X2

n1 + n2
, q′p = 1 − p′p .

The calculator function 2-PropZTest may be used to conduct this hy-
pothesis test.

Note: If the hypothesized difference between population proportions is
nonzero, H0 : p1 − p2 = ∆0 6= 0, the test statistic becomes

TS: z∗ =
(p′1 − p′2) − ∆0
√

p′1q
′
1

n1
+

p′2q
′
2

n2

.

There is no built–in calculator function to conduct this hypothesis test.3

Example: The proportions of defective parts produced by two machines
were compared, and the following data was collected.

Machine Sample Size Number Defective

1 150 12

2 180 9

Find a 90% confidence interval for the difference in population proportions
of defective parts, p1 − p2.

Calculator Solution:

(S1) The samples are assumed independent and each sample size is large
enough so that the distribution for the difference between the two
sample proportions is approximately normal. The confidence inter-
val is based on the standard normal distribution.

(S2) Select STAT ; TESTS ; 2-PropZInt. Enter the number of successes
and sample size for each group, and the level of confidence. Highlight
Calculate and press ENTER (Figure 10.13).

(S3) The confidence interval and summary statistics are displayed on the
Home Screen (Figure 10.14).

Note: The calculator uses p̂1 and p̂2 to denote the sample propor-
tions. 3

(S4) (−.0152, .0752) is a 90% confidence interval for the difference in
population proportions of defective parts. 2

Figure 10.13:
2-PropZInt input
screen.

Figure 10.14:
Confidence interval for
p1 − p2.

Example: A recent study reported that smoking boosts death risk for
diabetics. The death risk is increased more for women than men. Suppose
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as a follow–up study the smoking rates for male and female diabetics were
investigated. The following data was obtained.

Gender n Number Who Smoke

Male 500 215

Female 500 170

Test the hypothesis that the smoking rate (proportion of smokers) is
higher for males than for females. Use α = 0.05.

Calculator Solution:

(S1) The samples are assumed independent and each sample size is large
enough so that the distribution for the difference between the two
sample proportions is approximately normal. The population pro-
portions are assumed equal. The test statistic is z∗.

(S2) The four parts of the hypothesis test are:

H0: p1 − p2 = 0 (≤)

Ha: p1 − p2 > 0

TS: z∗ =
p′1 − p′2

√

(p′p)(q
′
p)

(

1

n1
+

1

n2

)

CR: z∗ ≥ z(α) = z(0.05) = 1.6449

(S3) Select STAT ; TESTS ; 2-PropZTest. Enter the number of successes
and sample size for each group. Highlight the upper-tailed alterna-
tive hypothesis and Calculate the results (Figure 10.15).

(S4) The hypothesis test results are displayed on the Home Screen (Figure
10.16).

(S5) Decision: reject H0.
Conclusion: The value of the test statistic, z∗ = 2.9245, lies in the
critical region (equivalently, P = .0017 < .05). There is evidence
to suggest the proportion of smokers is higher for males than for
females.

Note:

(N1) The Draw results are shown in Figure 10.17.

(N2) On the Calculate results screen, p̂ is the pooled estimate of
the common population proportion. 3 2

Figure 10.15:
2-PropZTest input
screen.

Figure 10.16:
Hypothesis test results.

Figure 10.17:
Hypothesis test Draw

results.

When comparing two populations, it is reasonable to consider the two
most fundamental distribution characteristics: center and variability. If
both populations are normal and samples are selected independently, a
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hypothesis test uses the ratio of sample variances and is based on an F
distribution. The built–in calculator function 2-SampFTest may be used
to compare two population variances (or standard deviations).

The hypothesis test procedure for comparing population variances:

H0: σ2
1 = σ2

2

Ha: σ2
1 > σ2

2 , σ2
1 < σ2

2 , σ2
1 6= σ2

2

TS: F ∗ = S2
1/S2

2

CR: F ∗ ≥ F (n1 − 1, n2 − 1, α), F ∗ ≤ F (n1 − 1, n2 − 1, 1− α),

F ∗ ≤ F (n1 − 1, n2 − 1, 1− α/2) or F ∗ ≥ F (n1 − 1, n2 − 1, α/2)

where F (ν1, ν2, α) denotes a critical value form an F distribution with ν1

and ν2 degrees of freedom.

Example: A recent study was conducted to compare the variability in
male and female systolic blood pressures. Random samples of 16 men and
13 women were obtained and the systolic blood pressures are given in the
table below.

Systolic Blood Pressure

Men 120 140 118 112 145 114 130 114
124 125 130 100 120 108 112 122

Women 122 102 118 126 108 130 104 116
102 122 120 118 130

Is there any evidence to suggest the variance in male systolic blood pres-
sure is greater than the variance in female systolic blood pressure? Com-
plete the hypothesis test using α = .01 and assume both populations are
normally distributed.

Calculator Solution:

(S1) Both populations are assumed normal and the samples were selected
independently. The test statistic is F ∗.

(S2) The four parts of the hypothesis test are:

H0: σ2
1 = σ2

2 (≤)

Ha: σ2
1 > σ2

2

TS: F ∗ = S2
1/S2

2

CR: F ∗ ≥ F (n1 − 1, n2 − 1, α) = F (15, 12, .01) = 4.01

(S3) Enter the systolic blood pressure for men in the list SBPM and the
systolic blood pressure for women in the list SBPW.
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(S4) In the STAT ; TESTS menu, select 2-SampFTest. Highlight Data,
enter the list names for each data set, and set the frequency for
each data set to 1. Select the one–sided alternative hypothesis and

Figure 10.18:
2-SampFTest input
screen.

Figure 10.19:
Hypothesis test results.

Figure 10.20:
Hypothesis test Draw

results.

Calculate the results (Figure 10.18).

Note: The 2-SampFTest input screen for the Stats option requires
the standard deviation for each group, or data set. These values
may be entered as an arithmetic expression, for example,

√
39. 3

(S5) The hypothesis test results are displayed on the Home Screen (Figure
10.19).

(S6) Decision: do not reject H0.
Conclusion: The value of the test statistic, F ∗ = 1.4847, does not
lie in the critical region (equivalently, P = .2570 > .01). There is no
evidence to suggest the variance in systolic blood pressure is higher
for men than women.

Note: The Draw results are shown in Figure 10.20. 3 2

Note:

(N1) In the DISTR ; DISTR menu the function Fpdf returns a value of
the probability density function for an F distribution with speci-
fied (ν1, ν2) degrees of freedom; calculator function with arguments:
Fpdf(x,ν1,ν2). Figure 10.21 shows the graph of the probability
density function for an F random variable with 8 and 10 degrees of
freedom (WINDOW settings: [0, 5]× [0, .8]).

(N2) The function Fcdf computes the probability of selecting a value
between a lower (a) and upper (b) bound for an F distribution
with specified (ν1, ν2) degrees of freedom; function with arguments:
Fcdf(a,b,ν1,ν2). Figure 10.22 shows the probability of selecting

Figure 10.21: An F

probability density
function.

a value between 1 and 2.5 from an F distribution with 4 and 15
degrees of freedom is .3513.

(N3) In the DISTR ; DRAW menu the function ShadeF draws the proba-
bility density function for an F distribution with specified (ν1, ν2)
degrees of freedom, shades the area between a lower (a) and upper
(b) bound, and computes the shaded area; function with arguments:
ShadeF(a,b,ν1,ν2). Figure 10.23 illustrates the use of ShadeF to
visualize the probability found in note (N2). 3

Figure 10.22: Use
of Fcdf to compute
probability.

Figure 10.23: Use of
ShadeF to illustrate (and
compute) probability.
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Notes:



Chapter 11

Applications of
Chi–Square

The chi–square distribution is used to test hypotheses concerning enumer-
ated data. This distribution is nonnegative in value, not symmetrical, and
skewed to the right. A chi–square distribution is completely determined
by the number of degrees of freedom.

Recall there are three built–in functions that involve the chi–square proba-
bility function and cumulative probability function (introduced in Chapter
9).

(R1) χ2pdf(x,ν) (in the DISTR ; DISTR menu): returns a value of the
probability function for a chi–square distribution with ν degrees of
freedom. Figure 11.1 shows a use of this function in the Y= editor.
Figure 11.2 shows the graph of the probability function for a chi–
square random variable with 7 degrees of freedom (WINDOW settings:
[0, 25]× [0, .13]).

(R2) χ2cdf(a,b,ν) (in the DISTR ; DISTR menu): returns the probability
of selecting a value between a and b for a chi–square distribution
with ν degrees of freedom. Figure 11.3 shows the probability of
selecting a value between 3 and 7 from a chi–square distribution
with 12 degrees of freedom is .1379.

(R3) Shadeχ2(a,b,ν) (in the DISTR ; DRAW menu): draws the probability
density function for a chi-square distribution with ν degrees of free-
dom, shades and computes the area between a and b. Figure 11.4
illustrates the use of Shadeχ2 (on the Home Screen) to visualize the
probability found in note (R2) and Figure 11.5 shows the resulting

Figure 11.1: Y= setup to
draw a chi–square
probability function.

Figure 11.2: Chi–square
probability function.

Figure 11.3: Use of
χ2cdf to compute
probability.

graph (WINDOW settings: [0, 35]× [−.0225, .09]).

Note! As the number of degrees of freedom increases, the chi–square

83
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distribution approaches a symmetric (normal) distribution. Figure
11.5 suggests this and further graphs, with larger number of degrees
of freedom, will (graphically) support this approximation result. 3

Figure 11.4: Shadeχ2

use on the Home Screen.

Figure 11.5: Resulting
probability function,
shaded area, and
computed probability .

A multinomial experiment has the following characteristics:

(C1) It consists of n identical independent trials.

(C2) The outcome of each trial falls into exactly one of k possible cells.

(C3) There is a probability associated with each cell, pi, and these prob-
abilities remain constant during the experiment.

(C4) The experiment will result in a set of observed frequencies, O1, O2,
. . ., Ok, where each Oi is the number of times a trial outcome falls
into cell i. O1 + O2 + · · · + Ok = n.

The testing procedure for multinomial experiments, or goodness–of–fit
test, is designed to test a hypothesis about the cell probabilities. The test
statistic compares the observed frequencies with the expected frequencies
and has a chi–square distribution.

Goodness–of–fit hypothesis test:

H0: p1 = p2 = · · · = pk

(The proportion of observations in each cell is independent of cell;
all proportions are equal.)

Ha: pi 6= pj for some i 6= j
(The number of observations in each cell depends on the cell; not
all proportions are equal.)

TS: χ2∗ =
∑

all cells

(O − E)2

E

CR: χ2∗ ≥ χ2(k − 1, α)

The expected number of observations in cell i is Ei = n·pi. The calculator
program GOODNESS may be used to conduct this hypothesis test. There is
also an option in this program for unequal expected frequencies.

Example: College students have regularly insisted on freedom of choice
when registering for courses. During a recent semester there were seven
sections of an introductory statistics class. The classes were scheduled to
meet at various times with a variety of instructors. The table below shows
the number of students who selected each of the seven sections.

Section 1 2 3 4 5 6 7

Number of Students 18 12 25 23 8 19 14

Is there any evidence to indicate students had a preference for certain
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sections, or does the data suggest each section was equally likely to be
selected? Use α = 0.05.

Calculator Solution:

(S1) There are 7 cells, or class sections. We are interested in knowing if
students had a preference for one section over the others or are
all sections preferred equally. A goodness–of–fit test with equal
expected frequencies is appropriate.

(S2) The four parts of the hypothesis test are:

H0: p1 = p2 = · · · = p7 (= 1/7)
There was no preference shown (equally distributed).

Ha: pi 6= pj for some i 6= j
There was a preference shown (not equally distributed).

TS: χ2∗ =
∑

all cells

(O − E)2

E

CR: χ2∗ ≥ χ2(k − 1, α) = χ2(6, 0.05) = 12.6

(S3) Enter the observed frequencies in the list CLASS. Execute the pro-
gram GOODNESS.

(S4) At the first program menu, select equal expected frequencies (Figure
11.6). Enter the list containing the observed frequencies (Figure
11.7).

(S5) The hypothesis test results are displayed on the Home Screen (Figure
11.8).

(S6) Decision: reject H0.
Conclusion: The value of the test statistic, χ2∗ = 12.9412, lies in the
critical region (equivalently, P = .0440 < .05). There is evidence to
suggest students had a preference for one class over the others. 2

Figure 11.6:
Goodness–of–fit test:
equal expected
frequencies.

Figure 11.7: Observed
frequencies list.

Figure 11.8: Hypothesis
test results.

If the expected frequencies are not all equal, the hypothesis test is still
based on a chi–square distribution. If the expected frequencies are not
known, they are computed from the known expected proportions. The
test statistic is the same.

Example: A recent article about the vacation home market reported the
percentage of people who preferred each unit size (percent preferring).
In a follow–up survey, 300 individuals were asked their vacation home
unit size preference (number preferring). The article and survey results
are given in the table below. Does the distribution of preferences in the
follow–up study differ from the distribution reported in the article? Use
α = 0.01.
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Unit Size Percent Preferring Number Preferring

Studio/efficiency 18.2 75
1 bedroom 18.2 60
2 bedrooms 40.4 105
3 bedrooms 18.2 45
Over 3 bedrooms 5.0 15

Calculator Solution:

(S1) We are interested in knowing if there is a difference in the pro-
portions reported in the article and the proportions in the follow–
up study. The expected frequencies (proportions) are unequal. A
goodness–of–fit test is appropriate.

(S2) The four parts of the hypothesis test are:

H0: The proportion of people in the follow–up study preferring each
unit size are as given in the article.

Ha: The proportions are not as given in the article.

TS: χ2∗ =
∑

all cells

(O − E)2

E

CR: χ2∗ ≥ χ2(k − 1, α) = χ2(4, 0.01) = 13.3

(S3) Enter the observed frequencies in the list STUDY and the expected
proportions in the list UNIT (Figure 11.9).

Note: The program GOODNESS uses the lists EXP, OBS, and PROPS.3

(S4) Execute the program GOODNESS. Select unequal frequencies (Figure
11.10) and known expected proportions (Figure 11.11).

(S5) Enter the observed frequency list and the expected proportion list
(Figure 11.12). The hypothesis test results are displayed on the
Home Screen (Figure 11.13).

(S6) Decision: do not reject H0.
Conclusion: The value of the test statistic, χ2∗ = 12.0093, does
not lie in the critical region (equivalently, P = .0173 > .01). At
the α = 0.01 level, there is not enough evidence to suggest the
proportions in the follow–up study differ from those given in the
article. 2

Figure 11.9: Observed
frequencies and
expected proportions.

Figure 11.10: Unequal
expected frequencies
option.

Figure 11.11: Known
expected proportions
option.

Figure 11.12: List
entries.

Figure 11.13:
Hypothesis test results.

A contingency table is an arrangement of data into a two–way classi-
fication. Each observed item is simultaneously classified by two variables
or traits. A hypothesis test based on the chi–square distribution is used
to determine whether the two variables are independent or dependent.
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Suppose a contingency table contains r rows and c columns. The expected
frequency at the intersection of the ith row and the jth column is given
by

Ei,j =
Row total × Column total

Grand total
=

Ri × Cj

n
.

Hypothesis test for independence of two variables
(contingency table analysis):

H0: The two variables are independent.

Ha: The two variables are dependent.

TS: χ2∗ =
∑

all cells

(O − E)2

E

CR: χ2∗ ≥ χ2((r − 1)(c − 1), α)

The built–in calculator function χ2-Test (in the STAT ; TESTS menu)
may be used to test the null hypothesis of independence of two variables.
The observed frequencies must be stored in a TI–83 Plus matrix. The
calculator function computes the expected frequencies and stores them in
another user–specified matrix.

Example: The manager of an assembly process would like to determine
whether the number of defective articles manufactured depends on the
day of the week the articles are produced. The following information was
collected.

Day of Week Nondefective Defective

Monday 185 15
Tuesday 190 7
Wednesday 195 12
Thursday 187 10
Friday 175 18

Is there any evidence to suggest the number of defective articles is depen-
dent on the day of the week? Use α = 0.05.

Calculator Solution:

(S1) We would like to know if the two variables, number of defectives
and day of the week, are related. A chi–square test based on the
contingency table is appropriate in order to test for dependence.

(S2) The four parts of the hypothesis test are:

H0: Number of defectives and day of the week are independent.

Ha: Number of defectives and day of the week are not independent.
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TS: χ2∗ =
∑

all cells

(O − E)2

E

CR: χ2∗ ≥ χ2((r − 1)(c − 1), α) = χ2(4, 0.05) = 9.49

(S3) Enter the contingency table in the matrix [A] (Figure 11.14).
Figure 11.14:
Contingency table in
[A].

Figure 11.15: χ2-Test

input screen.

Figure 11.16:
Hypothesis test results.

Figure 11.17: Expected
frequencies.

Figure 11.18:
Hypothesis test Draw

results.

(S4) Select STAT ; TESTS ; χ2-Test. Enter the matrix containing the
contingency table (Observed) and specify a matrix for the expected
frequencies (Figure 11.15). Calculate the results.

(S5) The hypothesis test results are displayed on the Home Screen (Figure
11.16) and the expected frequencies are stored in the specified matrix
(Figure 11.17).

(S6) Decision: do not reject H0.
Conclusion: The value of the test statistic, χ2∗ = 6.6437, does not
lie in the critical region (equivalently, P = .1560 > .05). There is
no evidence to suggest number of defectives and day of the week are
dependent.

Note: The Draw results are shown in Figure 11.18. 3 2

Note:

(N1) A test of homogeneity is another type of contingency table prob-
lem. It is used when one of the two variables is controlled by the
experimenter so that the row (or column) totals are predetermined.
The test statistic is the same and the calculator function χ2-Test

may be used to conduct this test.

(N2) The expected frequency in each cell should be at least 5. If several
cells have small expected frequencies, then cells might be combined;
collapse two or more rows/columns into one.

(N3) No cell should have expected frequency less than 1. Another solution
to small expected frequencies is to increase the sample size. 3



Chapter 12

Analysis of Variance

Many experiments are conducted to determine the effect of different levels
of a test factor on a response variable. Analysis–of–variance (ANOVA)
is a statistical technique used to test equality of population means. In
order to compare the means of the test factor, a measure of the variation
between the levels, MS(factor), is compared to a measure of the variation
within the levels, MS(error). If the quantity MS(factor) is significantly
larger than MS(error), then there is evidence to suggest the means for
each of the factor levels are not all the same.

The TI–83 Plus built–in function ANOVA may be used to compare the
means in up to 20 populations, or factor levels. The assumptions for
ANOVA are:

(A1) Each population is normally distributed.

(A2) Each population has the same variance, σ2.

(A3) The samples are selected independently from each population.

The hypothesis test for a one–way ANOVA is based on an F distribution
that compares the variation between the samples to the variance within

the samples. The standard ANOVA table is given below.

Source of Sum of Degrees of Mean Test
Variation Squares Freedom Square Statistic

Factor SS(factor) c − 1 MS(factor) F ∗ =
MS(factor)

MS(error)

Error SS(error) n − c MS(error)

Total SS(total) n − 1

89
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Notation:

SS(factor) = Sum of squares due to factors (between sample variation).

SS(error) = Sum of squares due to error (within sample variation).

SS(total) = Sum of squares due to total (total variation).

MS(factor) = Mean square due to factors.

= SS(factor)/(c − 1)

MS(error) = Mean square due to error.

= SS(error)/(n − c)

c = Number of factors, or populations, being studied.

n = Total number of observations.

ANOVA hypothesis test:

H0: The c factor (population) means are equal.
(µ1 = µ2 = · · · = µc)

Ha: At least two factor (population) means are unequal.
(µi 6= µj for some i 6= j)

TS: F ∗ = MS(factor)/MS(error)

CR: F ∗ ≥ F (c − 1, n − c, α)

Note:

(N1) If the null hypothesis is true (all means equal), then the test statistic,
F ∗, has an F distribution with c − 1 and n − c degrees of freedom.

(N2) The mean square due to error, MS(error), is an unbiased estimate
of the common variance σ2.

(N3) Sample sizes do not have to be equal. However, if all groups have
the same number of observations, the probability of a type II error
is minimized. 3

Example: A recent study compared the number of calories in certain
kinds of diet snack foods. The researcher randomly selected 50 snacks
and divided them into four categories: crunchy choices, salty sensations,
creamy concoctions, and sinless sweets. The calorie content for each snack
was measured and the results are given in the table below. Is there any
evidence to suggest a difference in the mean calorie content for the four
different snack food categories? Use α = .01.

Calculator Solution:

(S1) There are four factors (populations) of interest (calorie content of
the four snack foods), all assumed to be normally distributed with
equal variances, and the samples were selected independently. A
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one–way analysis–of–variance is appropriate.

Snack Food Category

Crunchy Salty Creamy Sinless
Choices Sensations Concoctions Sweets

89 100 99 90
99 32 97 99
91 60 65 94
76 65 79 91
90 100 99 100
90 70 90 54
97 5 90 87
52 14 100 88
93 52 50 96
80 59 94 50
82 100 70
90 70 90

75
100
70
88

(S2) The four parts of the hypothesis test are:

H0: The four snack food categories have equal mean calorie content.
µ1 = µ2 = µ3 = µ4

Ha: At least two of the categories have different mean calorie con-
tent. µi 6= µj for some µi 6= µj

TS: F ∗ = MS(factor)/MS(error)

CR: F ∗ ≥ F (c − 1, n− c, .01) = F (3, 46, .01) = 4.24

(S3) Enter the observations for each category in the calculator lists L1 -
L4. (Named lists may also be used.)

(S4) From the Home Screen, select ANOVA (in the STAT ; TESTS menu).
Enter the arguments, the lists containing the observations, for this
function separated by commas (Figure 12.1). Press ENTER .

Figure 12.1: Calculator
ANOVA function.

Figure 12.2: ANOVA

results.

(S5) The hypothesis test results are displayed on the Home Screen (Figure
12.2).

(S6) Decision: reject H0.
Conclusion: The value of the test statistic, F ∗ = 6.0878, lies in the
critical region (equivalently, P = .0014 < .01). There is evidence to
suggest at least two of the mean calorie contents are unequal.
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Note:

(N1) The ANOVA table (given below) may be constructed from the
calculator output shown in Figure 12.2.

Source of Sum of Degrees of Mean Test
Variation Squares Freedom Square Statistic

Factor 6955.56 3 2318.52 6.09

Error 17519.02 46 380.85

Total 24474.58 49

The value of Sxp is the pooled estimate of the common stan-
dard deviation.

(N2) The conclusion in this example is that at least two of the
mean calorie contents are unequal. The next natural question
is which pairs of means are unequal. Other statistical tech-
niques, for example, Tukey’s procedure or Duncan’s multiple–
range test, may be used to isolate pairwise differences.

(N3) Other statistical procedures, for example, Bartlett’s test, may
be used to check the assumption of equal variances. 3 2



Chapter 13

Linear Correlation and
Regression Analysis

Recall :

(R1) If bivariate data consists of two quantitative variables, the values
are often expressed mathematically as ordered pairs (x, y). The
first value, x, is the input, or independent, variable, and the second
value, y, is the output, or dependent, variable. This bivariate data
may be presented graphically on a scatter diagram: a plot of all
ordered pairs of bivariate data on a coordinate axis system. The
input variable x is plotted on the horizontal axis, and the output
variable y is plotted on the vertical axis. A scatter diagram, or
scatter plot, is a TI–83 Plus built–in statistical plot.

(R2) Suppose (x1, y1), (x2, y2), . . . , (xn, yn) represent n pairs of observa-
tions on two variables. The coefficient of linear correlation, or Pear-
son’s product moment correlation coefficient, r, is a numerical mea-
sure of the strength of the linear relationship between the two vari-
ables. The formula for r is

r =

∑

(x − x)(y − y)

(n − 1)sxsy
=

SS(xy)
√

SS(x)
√

SS(y)
.

Chapter 3 contains examples that illustrates these two concepts.

Another measure of linear dependency is the covariance. The covariance
of x and y is defined as the sum of the products of the distances of all
values of x and y from the centroid divided by n − 1:

covar(x, y) =

n
∑

i=1

(xi − x)(yi − y)

n − 1
.

93
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Note:

(N1) The covariance is positive if the scatter diagram is dominated by
points to the upper right and to the lower left of the centroid, (x, y).
If the majority of points are in the upper left and lower right sections
relative to the centroid, the covariance is negative.

(N2) The sign of the covariance is always the same as the sign of the slope
of the regression line.

(N3) The covariance does not have a standardized unit of measure. A
standardized measure of linear dependency is the coefficient of linear
correlation (as defined above, and also given by):

r =
covar(x, y)

sx · sy
.

Example: Professional golfers are commonly rated on the basis of how
much money they earn while playing on the tour. They are also given
a world point ranking that considers their performances for the past two
years, with an emphasis on the last year. Money winnings in 1998 through
August of that year and the world point rankings for 16 players are shown
in the table below.

Player Money Earnings ($) Points

David Duval 1,668,678 9.42
Mark O’Meara 1,523,295 9.51
Fred Couples 1,495,698 7.50
Tiger Woods 1,388,542 11.82
Jim Furyk 1,292,346 6.59
Justin Leonard 1,253,129 7.14
Lee Janzen 1,052,622 5.45
Mark Calcavecchia 910,254 5.51
Scott Hoch 878,623 5.76
Phil Mickelson 873,477 7.61
Jesper Parnevik 857,956 5.73
Tom Watson 822,385 5.47
Davis Love III 815,766 10.59
Tom Lehman 812,114 5.91
Vijay Singh 745,661 6.25
Nick Price 484,737 7.94

Construct a scatter diagram for this data. Calculate the covariance and
the linear correlation coefficient between money earnings and the world
point rankings. What conclusions might you draw from these results?

Figure 13.1: Money
earnings and points
data.

Calculator Solution:

(S1) Enter the money earnings data in the list EARN and the world point
rankings in the list POINT (Figure 13.1).
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(S2) Set up Plot1 ( STATPLOT ; STATPLOTS ; Plot1). Select On, Type

Figure 13.2: Plot1

settings.

Figure 13.3: WINDOW

settings.

Figure 13.4: Scatter
diagram.

Figure 13.5: COVAR

input.

Figure 13.6: Covariance
between EARN and POINT.

scatter plot (the first plot type), set Xlist to EARN, Ylist to POINT,
and select the desired Mark (Figure 13.2).

(S3) Select appropriate WINDOW settings (Figure 13.3) and press GRAPH

to display the scatter diagram (Figure 13.4).

(S4) On the Home Screen, execute the program COVAR. Enter the list
containing the money earnings and the list containing the world
point rankings (Figure 13.5). The covariance is displayed on the
Home Screen (Figure 13.6): covar(x, y) = 295797.1412.

(S5) On the Home Screen execute DiagnosticOn (from the CATALOG

menu). Select LinReg(a+bx) (in the STAT ; CALC menu), and enter
the lists EARN and POINT (Figure 13.7). The results are displayed on
the Home Screen (Figure 13.8): r = .4405. The scatter diagram and
the coefficient of linear correlation indicate only a weak positive lin-
ear relationship between money earnings and world point rankings.

2

Figure 13.7: Use
of LinReg(a+bx) to
compute r.

Figure 13.8:
LinReg(a+bx) results.

Suppose the set (x, y) of ordered pairs forms a random sample and the y–
values at each x have a normal distribution. The sample linear correlation
coefficient r is an estimate of the population linear correlation coefficient
ρ and simple inferences are based on a t distribution. Critical values for
r are presented in Appendix B of the main text.

Hypothesis test about a population correlation coefficient ρ:

H0: ρ = 0

Ha: ρ > 0, ρ < 0, ρ 6= 0

TS: t∗ =
R
√

n − 2√
1 − R2

CR: t∗ ≥ t(n − 2, α), t∗ ≤ −t(n − 2, α), |t∗| ≥ t(n − 2, α/2)

If the observations are from a bivariate normal distribution, a confidence
interval for ρ may be constructed and a more general hypothesis test is
based on the standard normal distribution. Confidence belts for r are
presented in Appendix B of the main text.
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Hypothesis test about ρ (bivariate normal distribution assumed):

H0: ρ = ρ0

Ha: ρ > ρ0, ρ < ρ0, ρ 6= ρ0

TS: z∗ =

√
n − 3

2
ln

[

(1 + R)(1 − ρ0)

(1 − R)(1 + ρ0)

]

CR: z∗ ≥ z(α), z∗ ≤ −z(α), |z∗| ≥ z(α/2)

The calculator program CORRTEST will compute a confidence interval for
ρ, conduct a hypothesis test based on a t distribution, or conduct a more
general hypothesis test based on a standard normal distribution.

Example: Two measures of a company’s performance are its net income
(earnings) and the total market value of its stock. Fifteen random compa-
nies were selected and their earnings and total market value of stock (in
millions of dollars) were recorded. The data is given in the table below.

Earnings 175.2 8.1 71.7 46.5 33.4 74.5 54.9 48.5
Stock 1986 94 645 2360 641 1178 325 895

Earnings 82.5 59.8 15.6 62.4 73.1 85.9 96.4
Stock 423 1717 165 611 827 947 845

Construct a scatter diagram, find the linear correlation coefficient, and
test for a significant positive correlation between earnings and market
value of stock. Use α = .05.

Calculator Solution:

(S1) Enter the earnings data in the list EARNS and the stock data in the
list STOCK.

(S2) Choose appropriate Plot1 and WINDOW ([0, 200]× [0, 2500]) settings,
and display the scatter diagram (Figure 13.9).

Figure 13.9: Scatter
diagram.

Figure 13.10: Sample
correlation coefficient r.

(S3) Execute DiagnosticOn (if not in effect) and execute LinReg(a+bx)

with the arguments EARNS and STOCK. The LinReg(a+bx) results are
shown in Figure 13.10. The scatter diagram and r = .4905 suggest
a moderate correlation between earnings and market value of stock.

(S4) Assume the ordered pairs (earnings, stock) from a random sample
and the market value of stock has a normal distribution for each
value of earnings. The population parameter of interest is ρ, the
linear correlation coefficient between earnings, or net income, and
total market value of stock and the hypothesis test is based on a t
distribution. Since the hypothesis test is for a significant positive
correlation between earnings and market value of stock, the appro-
priate alternative hypothesis is one–sided upper–tailed.
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(S5) The four parts of the hypothesis test are:

H0: ρ = 0

Ha: ρ > 0

TS: t∗ =
R
√

n − 2√
1 − R2

CR: t∗ ≥ t(n − 2, α) = t(15, .05) = 1.77

(S6) Execute the program CORRTEST. Select DATA at the first program
prompt (Figure 13.11).

Figure 13.11: Program
input is data in lists.

Figure 13.12: Lists
containing the data.

Figure 13.13:
Hypothesis test
procedure.

Figure 13.14:
Alternative hypothesis.

Figure 13.15:
Hypothesis test results.

(S7) Enter the names of the lists containing the data (Figure 13.12).
Select the appropriate hypothesis test procedure (Figure 13.13) and
alternative hypothesis (Figure 13.14).

(S8) The hypothesis test results are displayed on the Home Screen (Figure
13.15).

(S9) Decision: reject H0.
Conclusion: The value of the test statistic, t∗ = 2.0292, lies in the
critical region (equivalently, P = .0317 < .05). There is evidence to
suggest earnings and stock are positively correlated. 2

Recall from Chapter 3: Regression analysis is used to find the equation
of the line that best describes the relationship between two variables. The
equation for the best line, is called the regression equation and it may
be used to predict a value of the dependent variable based on a selected
value of the independent variable.

The linear model used to explain the behavior of linear bivariate data
in the population is Y = β0 + β1x + ε. This equation represents the
linear relationship between the two variables in a population. β0 is the
y–intercept, β1 is the slope, and ε is the random experimental error.

The regression line computed from the sample data is ŷ = b0 + b1x: b0 is
an estimate of β0 and b1 is an estimate of β1. The experimental error is
approximated by e = y − ŷ, the difference between the observed value of
y and the predicted value of y, ŷ, at a given value of x.

The calculator may be used to employ the method of least squares in
order to find the best–fitting line. The calculation of the coefficients of the
regression line and a hypothesis test for a significant regression are built–
in calculator functions. Using optional function arguments and plotting
features it is possible to view the graph of the regression line and the
scatter diagram on the same set of axes, and to obtain predicted values.
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A hypothesis test for a significant regression is equivalent to testing for
a nonzero slope parameter. An estimate of variance of the experimental
error, s2

e, is required and the test is based on a t distribution. Assume
the ordered pairs (x, y) form a random sample and the y–values at each
x have a normal distribution.

The hypothesis test procedure for significant regression:

H0: β1 = 0

Ha: β1 > 0, β1 < 0, β1 6= 0

TS: t∗ =
b1

sb1

where s2
b1 =

s2
e

∑

(x − x)2

CR: t∗ ≥ t(n − 2, α), t∗ ≤ −t(n − 2, α), |t∗| ≥ t(n − 2, α/2)

A 100(1−α)% confidence interval for the slope parameter β1 has endpoints

b1 ± t(n − 2, α/2) · sb1 .

Example: As part of a study for the graduate school at a large university,
a researcher investigated the effect of undergraduate grade point average
(GPA) on the graduate record exam (GRE). Fifteen random students were
selected and their GPA and GRE scores were recorded. The data is given
in the table below.

GPA (x) 2.30 3.65 3.00 2.75 3.10 2.55 2.50 2.30

GRE (y) 925 1300 1150 1400 900 825 950 1050

GPA (x) 2.90 3.15 3.25 2.00 2.75 2.65 3.13

GRE (y) 1200 1200 1100 700 850 990 1000

(E1) Find the regression coefficients and construct a graph of the regres-
sion line and the scatter diagram.

(E2) Is the regression line significant? (Is there any evidence to suggest
β1 6= 0.) Use α = .05.

(E3) If a student has an undergraduate GPA of 3.25, what is the predicted
GRE score?

Calculator Solution:

(S1) Enter the GPA data in the list GPA and the GRE data in the list
GRE.

(S2) Select the function LinReg(a+bx) (in the STAT ; CALC menu) and
enter three arguments: independent variable (GPA), dependent vari-
able (GRE), and a function variable (Y1, in the VARS ; Y-VARS ;
Function menu) for storing the regression equation (Figure 13.16).

Figure 13.16:
LinReg(a+bx) setup.

Figure 13.17:
LinReg(a+bx) results.

Figure 13.18: Plot1

settings. Press ENTER to execute this command.
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Note:

(N1) The third argument in LinReg(a+bx) (calculator function vari-
able) is optional. The regression equation is always stored in
the statistics variable RegEQ.

(N2) If DiagnosticOn is in effect LinReg(a+bx) will display r and
r2 also. 3

(S3) The slope and the y–intercept for the equation of the line of best fit,
r, and r2 (DiagnostiOn in effect) are displayed on the Home Screen
(Figure 13.17). The regression equation is ŷ = 296.8873+264.0946x,
r = .6000 and r2 = .3600.

(S4) Select Plot1 settings (Figure 13.18) and appropriate WINDOW settings
(Figure 13.19). Press GRAPH to display the scatter diagram and the
graph of the equation of the line of best fit (Figure 13.20).

Figure 13.19: WINDOW

settings.

Figure 13.20: Scatter
diagram and regression
line.

Figure 13.21:
LinRegTTest input
screen.

Figure 13.22:
LinRegTTest results.

Figure 13.23: Predicted
GRE score for
GPA = 3.25.

Note: Since the equation of the line of best fit was stored in the
function variable Y1, the graph of this line will automatically be
displayed (along with the scatter diagram). 3

(S5) The four parts of the hypothesis test for a significant regression are:

H0: β1 = 0

Ha: β1 6= 0

TS: t∗ =
b1

sb1

CR: |t∗| ≥ t(n − 2, α/2) = t(13, .025) = 2.160

(S6) Use the calculator built–in function LinRegTTest (in the STAT ;
TESTS menu) to test for a significant regression. In the LinRegTTest
input screen, enter the independent variable list (Xlist:GPA) and
the dependent variable list (Ylist:GRE), and frequency 1 (since each
observation occurs once). The alternative hypothesis is β1 6= 0 or,
equivalently, ρ 6= 0. The regression equation is always automatically
stored in the statistics variable RegEQ and in a function variable if
entered. Calculate the results (Figure 13.21).

(S7) The hypothesis test results are displayed on the Home Screen (Figure
13.22).

(S8) Decision: reject H0.
Conclusion: The value of the test statistic, t∗ = 2.7041, lies in the
critical region (equivalently, P = .0181 < .05). There is evidence to
suggest a significant regression.

(S9) The regression equation was stored in the function variable Y1 (by
LinReg(a+bx) and written over by LinRegTTest). On the Home
Screen, evaluate Y1 at 3.25 (Figure 13.23). The regression equation
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predicts a student with GPA 3.25 will score approximately 1155 on
the graduate record exam. 2

The regression equation may be used to make predictions for µy|x0
, the

mean value of Y for a given value of x, and for yx0
, a random value of Y

for a given value of x. The best point estimate for both µy|x0
and yx0

is ŷ.
The calculator program REGINTS may be used to construct a confidence
interval for a mean response, a prediction interval for a random value, and
to sketch confidence interval bands and prediction belts.

Example: A recent study reported on the relationship between the strength

and fineness of cotton fibers. Sixteen random samples were selected and
the strength and fineness for each fiber were recorded. The data is given
in the table below.

Strength (x) 76 69 71 76 83 72 78 74

Fineness (y) 4.4 4.6 4.6 4.1 4.0 4.1 4.9 4.8

Strength (x) 80 82 90 81 78 80 81 78

Fineness (y) 4.2 4.4 3.8 4.1 3.8 4.2 3.8 4.2

(E1) Calculate the regression equation using strength as the independent
variable.

(E2) Find a 99% confidence interval for the mean measurement of fineness
for fibers with a strength of 80.

(E3) Find a 99% prediction interval for a random value of fineness for
fibers with a strength of 75.

(E4) Sketch a scatter diagram, the regression line, and a 95% confidence
band on the same coordinate axes.

Calculator Solution:

(S1) Enter the strength data in the list STREN and the fineness data in
the list FINE.

(S2) Execute LinReg(a+bx) using STREN as the independent variable list
and FINE as the dependent variable list. The LinReg(a+bx) results
are displayed on the Home Screen (Figure 13.24). The regression
equation is ŷ = 7.1608− .0373x.

(S3) Execute the program REGINTS. Input the independent variable list
and the dependent variable list (Figure 13.25). Select confidence in-
terval for a mean response from the program procedure menu (Fig-
ure 13.26).

(S4) Enter the confidence level and a value for x (Figure 13.27). The
confidence interval is displayed on the Home Screen (Figure 13.28).

Figure 13.24:
LinReg(a+bx) results.

Figure 13.25: REGINTS

data input.

Figure 13.26: REGINTS

procedure menu.

Figure 13.27:
Confidence level and x

value

Figure 13.28:
Confidence interval for a
mean response.

(4.0174, 4.3362) is a 99% confidence interval for the mean fineness
when the strength is 80.
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(S5) Execute the program REGINTS. This time select a prediction interval
for a random value from the procedure menu. Enter the confidence
level and the value for x. The prediction interval is displayed on the
Home Screen (Figure 13.29). (3.7436, 4.9830) is a 99% prediction
interval for a random fineness when the strength is 75.

(S6) Execute the program REGINTS. Select confidence band from the pro-
cedure menu and enter a confidence level. The scatter diagram,
graph of the regression equation, and the confidence bands are dis-
played (Figure 13.30).

Figure 13.29: Prediction
interval for a random
value.

Figure 13.30: Scatter
diagram, regression line,
and confidence bands.

Note: The program uses ZoomStat to simultaneously display the
scatter diagram, regression line, and confidence band (or prediction
belt). The equations and lists are stored so that you may adjust the
WINDOW settings and change the graph style(s) if desired, and redraw
the graphs. 3 2
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Notes:



Chapter 14

Elements of
Nonparametric Statistics

Most of the statistical tests described in this manual require certain as-
sumptions; for example, the population is normal, or the population vari-
ances are equal. Nonparametric tests are important alternatives if few
assumptions can be made about the population(s) being studied. These
distribution–free procedures are based on elementary probability the-
ory, are extremely versatile, and are easy to use once a table of critical
values is developed for a particular application.

The sign test is a widely used nonparametric test that uses only plus
and minus signs. Three applications of the sign test are:

(A1) A confidence interval for the median of a single population.

(A2) A hypothesis test concerning the value of the median for a single
population.

(A3) A hypothesis test concerning the median difference (paired differ-
ence) for two dependent populations, often before and after treat-
ment measurements on the same individual or object.

The only assumption is that the n random observations forming the sam-
ple are selected independently and the population is continuous in the
vicinity of the median, ũ.

The test statistic is the number of plus signs (for example, the number of
observations greater than the hypothesized median). If the null hypothesis
is true, there will be an equal chance for plus and minus signs, and the test
statistic will have a binomial distribution with p = .5. If the number of
plus signs is significantly large or significantly small then there is evidence
of a treatment effect.

103



104 Chapter 14. Elements of Nonparametric Statistics

The sign test:

H0: µ̃ = µ̃0

Ha: µ̃ > µ̃0, µ̃ < µ̃0, µ̃ 6= µ̃0

TS: X = the number of plus signs

Under the null hypothesis, X has a binomial distribution with pa-
rameters n and p = .5.

CR: X ≥ c1, X ≤ c2, X ≥ c or X ≤ n − c

The critical values c1, c2, and c are obtained from the binomial
distribution with parameters n and p = .5 so that the probability of
a Type I error is as close as possible to the desired significance level
without exceeding it.

Sample values equal to µ̃0 are excluded from the analysis and the
sample size is reduced accordingly.

If n ≥ 10, the distribution of X is approximately normal with mean
.5n and variance .25n. In this case, a normal approximation to the
binomial distribution may be used to obtain a test statistic based
on a standard normal random variable.

TS: z∗ =
(X ± .5) − .5n

.5
√

n

The continuity correction, ±.5, is used and depends upon the alter-
native hypothesis.

CR: z∗ ≥ z(α), z∗ ≤ −z(α), |z∗| ≥ z(α/2)

The calculator program SIGNTEST will compute the position numbers for
a confidence interval, construct a confidence interval for the median of
a single population, and conduct a hypothesis test concerning the me-
dian for a single population or the median difference for two dependent
populations. The program computes both test statistics and returns the
observed significance level in each case.

Example: A recent article suggested that university administrator’s pay
increased by 5.4% last year. A national teacher’s union argued the pay
increase was much more. In order to investigate the claim made in the
article, a random sample of university administrator salary increases was
obtained. The percentage increases are given in the table below.

1.6 11.4 4.2 8.7 4.5 6.4 5.9 5.7 4.5 6.6 4.4 4.1

7.6 5.5 10.6 7.8 6.8 3.0 3.5 7.9 8.0 4.3 2.4 7.0

Is there any evidence to suggest the median pay increase is greater than
5.4%? Use α = .05.
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Calculator Solution:

(S1) The 24 observations were obtained randomly and the population
is assumed to be continuous in the vicinity of the median. There
are no other assumptions about the population. The parameter of
interest is the median. A sign test is appropriate.

(S2) The four parts of the hypothesis test are:

H0: µ̃ = 5.4 (≤)

Ha: µ̃ > 5.4

TS: X = the number of plus signs (the number of observations
greater than 5.4).

For large n: z∗ =
(X ± .5) − .5n

.5
√

n

CR: X ≥ 17 (α ≈ .0320)

Using z∗: z∗ ≥ z(.05) = 1.6449

(S3) Enter the salary increase data in the list PAY. Execute the program
SIGNTEST.

(S4) Select hypothesis test from the procedure prompt (Figure 14.1) and
data contained in one list from the input prompt (Figure 14.2). En-
ter the list containing the salary data and the hypothesized median
(Figure 14.3), and select the alternative hypothesis (Figure 14.4).

(S5) The hypothesis test results are displayed on the Home Screen (Fig-
ure 14.5). Both test statistics (X , and the large–sample z∗) and
corresponding P values are given.

(S6) Decision: do not reject H0.
Conclusion: The value of the test statistic, x = 14 and z∗ = .6124,
does not lie in the critical region (equivalently, P = .2706; P =
.2701). There is no evidence to suggest the median salary increase

Figure 14.1: Sign test
procedure.

Figure 14.2: Hypothesis
test input.

Figure 14.3: List
containing the data and
µ̃0.

Figure 14.4: Alternative
hypothesis.

Figure 14.5: Hypothesis
test results.

is greater than 5.4%. 2

The Mann–Whitney U test is a nonparametric alternative to the t test
for the difference between two population means. It is designed to help
determine if two independent samples come from the same populations.
Assume the two independent random samples are independent within each
sample as well as between samples and are from continuous distributions.

The hypothesis test is stated in terms of population medians and is based
on the sum of ranks. The data from the two independent samples is
combined and ranked. If the two samples come from the same population,
then the ranks should be evenly distributed. Otherwise one of the samples
will have more of the lower ranks and thus a smaller sum of ranks. If both



106 Chapter 14. Elements of Nonparametric Statistics

samples are eight or larger, then the test may be based on the standard
normal distribution. The calculator program MANNWHIT may be used to
conduct this test.

The Mann–Whitney U test:

Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn, represent the independent random
samples.

H0: µ̃1 − µ̃2 = ∆0

Ha: µ̃1 − µ̃2 > ∆0, µ̃1 − µ̃2 < ∆0, µ̃1 − µ̃2 6= ∆0

Subtract ∆0 from each observation in sample 1. Combine the (Xi −
∆0)’s and the Yj ’s into one sample and rank all of the observations.
Equal observations are assigned the mean rank for their positions.

TS: U∗ = min{U1, U2}

U1 = mn +
n(n + 1)

2
− R2, U2 = mn +

m(m + 1)

2
− R1

R1 is the sum of the ranks of (Xi−∆0) in the combined sample and
R2 is the sum of the ranks of Yj in the combined sample.

CR: U∗ ≤ c

c is a critical value (from a table) for the Mann–Whitney U test so
that the probability of a Type I error is as close as possible to the
desired significance level without exceeding it.

When both m and n are greater than 8, U has approximately a
normal distribution with

µU =
mn

2
and σ2

U =
mn(m + n + 1)

12

In this case the Mann–Whitney U test may be based on a standard
normal distribution.

TS: z∗ =
U∗ − µU

σU

CR: z∗ ≤ −z(α) or z∗ ≤ −z(α/2) (if two–tailed test)

Example: The data given in the table below represents the number of
hours two different cellular phone batteries worked before a recharge was
necessary.

Battery A 44 42 44 44 42 49 53 58

Battery B 51 52 45 47 49 41 48 37

Battery A 41 49 47 45

Battery B 40 49 43 53 44 55 35
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Is there any evidence to suggest battery type B lasts longer than battery
type A. Use α = .05.

Calculator Solution:

(S1) Assume the two samples are independent and the battery life dis-
tributions are continuous. In order to compare the distributions a
Mann–Whitney U test is appropriate.

(S2) The four parts of the hypothesis test are:

H0: µ̃1 − µ̃2 = 0 (≥)
The distribution of battery life is the same for each type.

Ha: µ̃1 − µ̃2 < 0
The distributions are not the same. Battery type B lasts longer
than battery type A.

TS: U∗ = min{U1, U2}
Both sample sizes are greater than 8. U has approximately a
normal distribution.

z∗ =
U∗ − µU

σU

CR: U∗ ≤ 55

Using z∗: z∗ ≤ −z(.05) = −1.6449

(S3) Enter the times for battery A in the list BATTA and the times for
battery B in the list BATTB. Execute the program MANNWHIT.

(S4) Enter the name of each list containing the data and the value for
∆0 (Figure 14.6). Select the alternative hypothesis (Figure 14.7).

(S5) The hypothesis test results are displayed on the Home Screen (Figure
14.7). The values for U∗ and z∗ are given along with the p–value
and the sample sizes.

(S6) Decision: do not reject H0.
Conclusion: The value of the test statistic, U ∗ = 77.5 and z∗ =
−.6099, does not lie in the critical region (equivalently, P = .2710 >
.05). There is no evidence to suggest the distributions are different,

Figure 14.6: Lists
containing data and
value for ∆0.

Figure 14.7: Alternative
hypothesis.

Figure 14.8: Hypothesis
test results.that battery B lasts longer than battery A. 2

The runs test is used to test the randomness of data. Observations are
divided into two categories according to a certain characteristic. A run is a
sequence of data that possesses a common characteristic. The test statistic
is V ∗, the number of runs observed. An approximate test procedure is
based on the standard normal distribution. The program RUNSTEST will
conduct this approximate test procedure given the number of runs.
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The runs test:

H0: The sequence is random.

Ha: The sequence is not random.

TS: V ∗ = the number of runs.

CR: V ∗ ≤ c1 or V ∗ ≥ c2

c1 and c2 are critical values (from a table) for the runs test so that
the probability of a Type I error is as close as possible to the desired
significance level without exceeding it.

Let n1 be the number of observations with characteristic 1, and
let n2 be the number of observations with characteristic 2. When
both n1 and n2 are greater than 20, V has approximately a normal
distribution with

µV =
2n1n2

n1 + n2
+ 1 and σ2

V =
2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)

In this case the runs test may be based on the standard normal
distribution.

TS: z∗ =
V ∗ − µV

σV

CR: |z∗| ≥ z(α/2)

Example: The letters in the following sequence represent the direction
each car turned after exiting at a certain ramp on the New Jersey Turnpike
(L - left, R - right).

L L R R R R R R R L L L R R R R L L R R

R R L L L L L R R L L L R L R L L R R L

L R R R R R R L L L L L R R R R R R L L

Test the null hypothesis that the sequence is random with regards to
direction. Use α = .05.

Calculator Solution:

(S1) A runs test is appropriate in order to test the sequence for random-
ness. The four parts of the hypothesis test are:

H0: The sequence of directions is random.

Ha: The sequence of directions is not random.

TS: V ∗ = the number of runs.

The number of observations with each characteristic is greater
than 20. V has approximately a normal distribution.
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z∗ =
V ∗ − µV

σV

CR: |z∗| ≥ z(α/2) = z(.025) = 1.96

(S2) Execute the program RUNSTEST. Enter the number of observations
with each characteristic (the number of L’s and the number of R’s)
and the number of runs (Figure 14.9).

(S3) The hypothesis test results are displayed on the Home Screen (Figure

Figure 14.9: Number of
observations with each
characteristic and
number of runs.

Figure 14.10:
Hypothesis test results.

14.10).

(S4) Decision: reject H0.
Conclusion: The value of the test statistic, z∗ = −3.0782, lies in the
critical region (equivalently, P = .0021 < .05). There is evidence to
suggest the direction cars turn after exiting the New Jersey Turnpike
at this exit is not random. 2

The sample linear correlation coefficient is a measure of the strength of the
linear association between two continuous variables. Spearman’s rank
correlation coefficient is a measure of the correlation between paired
rankings.

Suppose there are n pairs of observations from a random sample and the
variables are ordinal or numerical. If necessary, convert the data to ranks,
and rank each sample separately. Equal observations are assigned the
mean rank for their position. Spearman’s rank correlation coefficient is a
measure of the linear association between the ranks and is defined by

rs = 1 −
6

n
∑

i=1

d2
i

n(n2 − 1)

where di is the difference in the paired rankings. The formula is valid only
if there are no ties. However, the approximation is good if the number of
ties is small in comparison to n.

As n increases the distribution of rs approaches a normal distribution.
The calculator program SPEARMAN computes rs and conducts a hypothesis
test based on the standard normal distribution. Tables are available for
critical values of Spearman’s rank correlation coefficient.

Hypothesis test about a population correlation coefficient between ranks
based on Spearman’s rank correlation coefficient:

H0: ρ = 0 (no correlation between the ranks in the population)

Ha: ρ > 0, ρ < 0, ρ 6= 0

TS: r∗s
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CR: r∗s ≥ c1, r∗s ≤ c2, |r∗s | ≥ c

c1, c2, and c are critical values from a table.

As n increases, rs has approximately a normal distribution. In this
case the hypothesis test may be based on the standard normal dis-
tribution.

TS: z∗ = rs

√
n − 1

CR: z∗ ≥ z(α), z∗ ≤ −z(α), |z∗| ≥ z(α/2)

Example: A researcher believes a certain toxic chemical accumulates in
body tissues with age and may eventually cause heart disease. Twelve
subjects were selected at random. Their age and the chemical concentra-
tion (in parts per million) in tissue samples is given in the table below.

Age 82 83 64 53 47 50

Chem Con 170 40 64 5 15 5

Age 70 62 34 27 75 28

Chem Con 48 34 3 7 50 10

Is there any evidence to suggest the chemical concentration in tissue sam-
ples increases with age? α = .01.

Calculator Solution:

(S1) Assume the 12 ordered pairs of data form a random sample and both
variables are continuous. Spearman’s rank correlation coefficient is
an appropriate measure of the linear association between age and
chemical concentration ranks.

(S2) The four parts of the hypothesis test are:

H0: ρ = 0 (≤)
There is no correlation between the ranks in the population.

Ha: ρ > 0
There is a positive rank correlation in the population.

TS: r∗s

The approximate test statistic based on the standard normal
distribution is given by: z∗ = rs

√
n − 1

CR: r∗s ≥ .703

Using z∗: z∗ ≥ z(α) = z(.01) = 2.3263

(S3) Enter the age data in the list AGE and the chemical concentration
data in the list CHEM. Execute the program SPEARMAN.

Figure 14.11: Lists
containing the data. (S4) Enter the names of the lists containing the data (Figure 14.11),
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select the type of data (Figure 14.12), and choose the alternative
hypothesis (Figure 14.13).

(S5) The hypothesis test results are displayed on the Home Screen (Fig-
ure 14.14). The value of Spearman’s rank correlation coefficient is

Figure 14.12: Type of
data.

Figure 14.13:
Alternative hypothesis.

Figure 14.14:
Hypothesis test results.

included in the output and labeled as R. Here, rs = .7535.

(S6) Decision: reject H0.
Conclusion: The value of the test statistic, r∗s = .7535 and z∗ =
2.4991, lies in the rejection region (equivalently, P = .0062 < .01).
There is evidence to suggest that older people tend to have higher
levels of chemical concentration in their tissues. 2
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Notes:
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Calculator Programs and
Lists
The table below contains a list of the TI–83 Plus calculator programs
illustrated in this supplement, a brief description of each program, and
the page on which the program is first presented.

Program Description Page

BAYES Applies Bayes’ Rule to a collection of conditional and
unconditional probabilities.

38

CENTRAL Computes the midrange and mode for a data set. 18
CHEBY Applies Chebyshev’s theorem to a sample or

population, summary statistics, or observations.
25

CHISQINT Constructs a confidence interval for a population
variance, σ2.

68

CHISQTST Conducts a hypothesis test about a population
variance, σ2.

69

CIRCLE Displays a circle graph or pie diagram. 9
CROSSTAB Summarizes data in a cross–tabulation or contingency

table.
27

DISCRV Computes the mean, variance, and standard deviation
for a discrete random variable.

41

DOTPLOT Displays a dotplot. 13
FREQDIST Constructs a frequency distribution for a data set. 13
GOODNESS Conducts a goodness–of–fit test to determine how

well an observed set of frequencies fits an expected
set of frequencies.

84

GROUPBAR Displays side–by–side bar graphs. 29
GROUPED Computes (estimates of) the mean, variance, and

standard deviation for data presented in the form of
a grouped frequency distribution.

20

PARETO Displays a Pareto diagram for numbers and types of
defects.

12

POSITION Computes quartiles, percentiles, midquartile, and
interquartile range for a data set.

21

RANDOM Constructs a simple random sample with or without
replacement.

53
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The table below contains the TI-83 Plus calculator lists and groups (of
lists) used in examples presented in this supplement that are available at
the web site listed in the Preface. Calculator group names are indicated
with an asterisk in front of the name.

List Description Page

LAPT Aptitude test scores for applicants for a certain civil
service position.

24

LBLOOD Hemoglobin test results from diabetics. 14
LBOXES Weight of randomly selected cereal boxes. 61
*CHICK: LFREQS, LGAIN 20

Data from an experiment to judge the value of a new
diet for chickens. Frequency of occurrence of each
observation and weight gain.

LCLASS Number of students registered for introductory
statistics class sections.

84

*COLLS: LGEND, LMAJOR 27
College students classified according to gender and
major.

*COLWM: LTALL, LWEIGH 33
Height and weight of eight college women.

LDAYS Days in a standard school year for several different
countries.

17

LDEFEC Final daily inspection defect report for an assembly
line at a local manufacturer.

12

*FASTFOOD: LCALOR, LFAT 30
Calories and fat content in some popular fast food
items.

LIGNIT Ignition time data for certain fabrics. 21
*LONGDIST: LCOMPA, LCOMPB, LCOMPC 29

Long distance telephone charges for randomly selected
phone numbers using one of three different carriers:
A, B, C.

LLUNCH Daily amount spent for lunch by employees at a small
business.

19

LMILES Miles per gallon for a specially designed high mileage,
two–seat automobile.

69

LMINS Exercise capacity (measured in minutes) for police
academy recruits.

18

LNUMB Distribution of automobiles in the faculty parking lot
on a recent Monday morning.

11

*NUNS: LAGE, LCOUNT 16
Roman Catholic nun survey results. Class marks for
ages and frequency for each class interval.

LOCTAN Gasoline octane ratings from a supplier’s pipeline. 64



Calculator Programs and Lists 117

List Description Page

LOPERS Number of cases of each type of operation performed
at General Hospital last year.

10

LPARTS Length of parts produced by a certain machine after
an adjustment.

58

*PECLASS: LPUSH, LSIT 32
Fitness scores from a physical education class:
push–ups and sit–ups.

*SALTFREE: LBEFOR, LAFTER 72
Before and after diastolic blood pressure for people
following a salt–free diet for two weeks.

LSCORE A random sample of exam scores from a large
introductory statistics class.

13

*SYSTOLIC: LSBPM, LSBPW 80
Systolic blood pressure for men and women.

LTIMES Manual dexterity times required to complete a certain
task.

23

*VACATION: LSTUDY, LUNIT 86
Vacation home market study: percentage of people
who preferred each unit size and survey results.


