Population Biology

- The study of populations
- Chapter 10
- Biotic Potential
- Emphasize on the consequences human population growth

Current Human Population Data

- http://opr.princeton.edu/popclock/popupclock.html
 - 6.58 Billion and growing

<table>
<thead>
<tr>
<th>TIME UNIT</th>
<th>BIRTHS</th>
<th>DEATHS</th>
<th>NATURAL INCREASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>133,201,704</td>
<td>55,490,538</td>
<td>77,711,166</td>
</tr>
<tr>
<td>Month</td>
<td>11,100,142</td>
<td>4,624,272</td>
<td>6,475,871</td>
</tr>
<tr>
<td>Day</td>
<td>364,936</td>
<td>152,029</td>
<td>212,907</td>
</tr>
<tr>
<td>Hour</td>
<td>15,206</td>
<td>6,335</td>
<td>8,871</td>
</tr>
<tr>
<td>Minute</td>
<td>263</td>
<td>106</td>
<td>148</td>
</tr>
<tr>
<td>Second</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

US POPULATION GROWTH

About 301,000,000 and growing

A Mathematical Approach to Understanding Population Growth

1. The initial size of the population = \(N_0 \)
2. The number of Births = \(B \)
3. The number of Deaths = \(D \)
4. The number of Immigrants = \(I \)
5. The number of Emigrants = \(E \)
6. The size of the population at time “\(t \)” = \(N_t \)

The population at any time can be determined with the following equation

\[
N_t = N_0 + B - D + I - E
\]

\[
N_t = N_0 + B - D
\]
Rates vs Absolutes
A "rate" is a value divided by time
 The number of Births and Deaths per unit time is at least part a function of the size of the population.

Birth and Death rates are often calculated on a per capita bases i.e.

\[b = B \text{unit time}^{-1} N^{-1} \text{(read- birth rate equals Births per year per individual)} \]
\[d = D \text{unit time}^{-1} N^{-1} \text{(read- death rate equals Deaths per year per individual)} \]

Growth rates on per capita bases can ve calculated by subtracting \(d \) from \(b \), i.e. \(r = b - d \)
Where is per capita growth rate of the population.

Changes in \(N \) (assume \(I \) and \(E = 0 \))
\[\Delta N = B - D \]
the number of B's and D's for some discrete unit of time can be estimated by --- \(B - D = rN \)

\[\frac{dN}{dt} = (b - d) N = rN \]

Note:
1: \(r \) = the intrinsic rate of natural increase.
2: Does not predict \(N_t \) only \(\Delta N \)
3. \(\Delta N \) is a function of \(N \)
4. Assumes \(r \) represents per capita growth rate for some discrete time period.

DISCRETE VS CONTINUOUS GROWTH

Discrete assumes that the population growth only occurs periodically (annually or monthly).

Continuous means that the population is growing all the time.

Analogy to interests rates
if the \(r=0.05 \) new individuals per week per old individuals and we start with 100 individuals.
 Week 0 =100, Week 1= 105, week 52= 1264.28
 if \(r=1.05 \) new individ per 2 weeks per individ.
 Week 0=100, Week 2=105, week 52=355.57
 if \(r=1.05 \) new individ per 52 weeks per individ.
 Week 0=100, Week 2=100, week 52=105

Mathematically:
For discrete growth

\[N_t = N_0 + N_0 e^{rt} \]

For Continuous growth

\[N_t = N_0 e^{rt} \]
Properties of Exponential Growth

- Population will always increase by the same Percent in any two periods of time of the same length
 - Simplest example assume population doubles each year
 - $2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 64 \rightarrow 128 \rightarrow 256 \rightarrow 512$
 - If $r=0.05$
 - $2 \rightarrow 2.10 \rightarrow 2.21 \rightarrow 2.32 \rightarrow 2.43 \rightarrow 2.55 \rightarrow 2.68 \rightarrow 2.81$
 - Still J-shaped.