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Abstract

A partial difference set having parameters (n2, r(n− 1), n + r2 − 3r, r2 − r) is called a
Latin square type partial difference set, while a partial difference set having parameters
(n2, r(n+1),−n+r2+3r, r2+r) is called a negative Latin square type partial difference
set. Nearly all known constructions of negative Latin square partial difference sets are
in elementary abelian groups. In this paper, we develop three product theorems that
construct negative Latin square type partial difference sets and Latin square type
partial difference sets in direct products of abelian groups G and G′ when these groups
have certain Latin square or negative Latin square type partial difference sets. Using
these product theorems, we can construct negative Latin square type partial difference
sets in groups of the form G = (Z2)4s0 × (Z4)2s1 × (Z16)4s2 × · · · × (Z22r)4sr where
the si are nonnegative integers and s0 + s1 ≥ 1. Another significant corollary to these
theorems are constructions of two infinite families of negative Latin square type partial
difference sets in 3-groups of the form G = (Z3)2 × (Z3)2s1 × (Z9)2s2 × · · · × (Z32k)2sk

for nonnegative integers si. Several constructions of Latin square type PDSs are also
given in p-groups for all primes p. We will then briefly indicate how some of these
results relate to amorphic association schemes. In particular, we construct amorphic
association schemes with 4 classes using negative Latin square type graphs in many
nonelementary abelian 2-groups; we also use negative Latin square type graphs whose
underlying sets can be elementary abelian 3-groups or nonelementary abelian 3-groups
to form 3-class amorphic association schemes.

Keywords: Negative Latin square type partial difference set, Latin square type par-
tial difference set, partial difference set, amorphic association scheme, association scheme,
character theory
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1 Introduction

Let G be a finite group of order v with a subset D of order k. Suppose further that the
differences d1d2

−1 for d1, d2 ∈ D, d1 6= d2 represent each nonidentity element of D exactly λ
times and the nonidentity element of G−D exactly µ times. Then D is called a (v, k, λ, µ)-
partial difference set (PDS) in G. The survey article of Ma provides a thorough treatment
of these sets [6]. A partial difference set having parameters (n2, r(n − 1), n + r2 − 3r, r2 −
r) is called a Latin square type PDS. Similarly, a partial difference set having parameters
(n2, r(n+1),−n+r2 +3r, r2 +r) is called a negative Latin square type PDS. Originally, most
constructions of both of these types of PDSs were in elementary abelian groups.

Over the past 15 to 20 years, there have been numerous constructions of Latin square
type PDSs in nonelementary abelian groups, for instance [1], [4], [5], [6], and [9]. On the
other hand, nearly all negative Latin square type PDS constructions had been in elementary
abelian groups. Recently, Davis and Xiang constructed an infinite family of negative Latin
square type PDSs in some nonelementary abelian 2-groups [2].

In this paper, we will give three product theorems for arbitrary abelian p-groups. The
first will show that when one p-group can be partitioned into certain Latin square type PDSs
and another p-group into similar negative Latin square type PDSs, then we can construct
a partition of negative Latin square type PDSs in the product of the groups. The second
product theorem is similar, except in this case both groups are partitioned into Latin square
type PDSs and the result is also Latin square type. In the third case, both groups are
partitioned into negative Latin square type PDSs and in the product Latin square type
PDSs are formed.

Using the first of these product theorems, we will construct 4 negative Latin square type
PDSs in many nonelementary abelian groups. Specifically, we can construct such PDSs in
groups G of the form G = (Z2)

4s0 × (Z4)
2s1 × (Z16)

4s2 × · · · × (Z22r)4sr where the si are
nonnegative integers and s0 + s1 ≥ 1.

Another significant result is in the case of 3-groups. Using the first product theorem we
can construct many new negative Latin square PDSs in nonelementary abelian 3-groups.
One family generalizes the quadratic form type PDSs that includes the (81, 20, 1, 6)-PDS in
(Z3)

4 (Theorem 2.6 in [6]). A second parameter set of negative Latin square type PDSs in
3-groups generalizes the known case of the (81, 30, 9, 12)-PDS in (Z3)

4.
We will also indicate the usefulness of the second theorem, as it provides constructions

of Latin square type PDSs in q-groups for all prime powers q = pr. The third theorem is
given for completeness, though at this point it seems less noteworthy due to the fact that
negative Latin square type PDSs have been less easily constructed than Latin square type.

Partial difference sets in abelian groups are often studied within the context of the group
algebra Z[G]. For a subset D of an abelian group G, D =

∑
d∈D d and D(−1) =

∑
d∈D d

−1.
The following equations hold for a (v, k, λ, µ)-partial difference set, D, in the abelian group,
G, with identity 0:

DD(−1) = λP + µ(G−D − 0) + k0, 0 6∈ D.

Character theory often is used when studying partial difference sets in abelian groups. A
character on an abelian group G is a homomorphism from the group to the complex numbers
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with modulus 1 under multiplication. The principal character sends all group elements to
1. The following theorem shows how character sums can be used when studying partial
difference sets. See Turyn [10] for a proof of similar results.

Theorem 1.1 Let G be an abelian group of order v with a subset D of cardinality k such
that k2 = k + λk + µ(v − k − 1). Then D is a (v, k, λ, µ) partial difference set in G if and

only if for every nonprincipal character χ on G, χ(D) =
λ−µ±

√
(λ−µ)2+4(k−µ)

2
.

2 Product Theorems for Negative Latin Square Type

PDSs and Latin Square Type PDSs

In this section, we will obtain three product theorems that provide the machinery needed
for all the results in the paper. Before we proceed with the theorems, it will be convenient
to consider a lemma that relates the specific type of PDSs we have with character theory.
We will omit the proofs of Theorems 2.2 and 2.3, since they are analogous to the proof of
Theorem 2.1.

Lemma 2.1 Let q = pr be a prime power and let e = ±1, and suppose that the abelian
group G having order q2s contains subsets P0

∗, P1, ..., Pq−1 with the following properties:

(1) P0
∗ ∪ P1 ∪ · · · ∪ Pq−1 = G− {0},

(2) Pi ∩ Pj = ∅ for i 6= j,

(3) P0
∗ is a (q2s, (qs−1 + e)(qs − e), eqs + (qs−1 + e)2 − 3e(qs−1 + e), (qs−1 + e)2 − e(qs−1 + e))

PDS in G,

(4) For i 6= 0, Pi is a (q2s, qs−1(qs − e), eqs + (qs−1)2 − 3e(qs−1), (qs−1)2 − e(qs−1)) PDS in G.
Let P0 = {0} ∪ P0

∗. Then if χ is a nonprincipal character on G, χ(Pi) = eqs − eqs−1

for some 0 ≤ i ≤ p − 1, and χ(Pj) = −eqs−1∀j 6= i. When e = 1 the PDSs are all of Latin
square type and when e = −1 the PDSs are all of negative Latin square type.

Proof: Suppose that χ is a nonprincipal character on G. The fact that χ(Pj) = δ(eqs)−eqs−1

for δ = 0, 1 is an immediate consequence of Theorem 1.1. Since χ(G) = χ(P0 ∪ P1 ∪ · · · ∪
Pq−1) = 0, we must have exactly one Pi for which χ(Pi) = eqs − eqs−1.

2

Theorem 2.1 (Product Theorem 1 - Negative Latin × Latin) Let q = pr be a prime
power, and suppose that abelian groups G and G′ have orders q2s and q2t respectively. Suppose
further that G contains negative Latin square type PDSs P0

∗, P1, ..., Pq−1 that satisfy the
criteria for Lemma 2.1 and G′ posseses Latin square type PDSs P ′

0
∗, P ′

1, ..., P
′
q−1that satisfy

the criteria of Lemma 2.1.
Define P0 = P0

∗ ∪ {0} and P ′
0 = P ′

0
∗ ∪ {0}.

Then define sets D0
∗, D1, ..., Dq−1 in G×G′ as follows:

(1) D0
∗ = (P0 × P ′

0) ∪ (P1 × P ′
1) ∪ · · · ∪ (Pq−1 × P ′

q−1)− {(0, 0)}, D0 = D0
∗ ∪ {0, 0}
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(2) For i 6= 0, Di = (P0 × P ′
i ) ∪ (P1 × P ′

i+1) ∪ · · · ∪ (Pq−i × P ′
0) ∪ · · · ∪ (Pq−1 × P ′

i+q−1), where
the subscripts are mod q.

The sets Di have the following properties:

(1) D0
∗ ∪D1 ∪ · · · ∪Dq−1 = (G×G′)− {(0, 0)},

(2) Di ∩Dj = ∅ for i 6= j,

(3) D0
∗ is a (q2(s+t), (q(s+t)−1 − 1)(qs+t + 1),−qs+t + (qs+t−1 − 1)2 + 3(qs+t−1 − 1), (qs+t−1 −

1)2 + (qs+t−1 − 1)) negative Latin square type PDS in G×G′,

(4) For i 6= 0, Di is a (q2(s+t), qs+t−1(qs+t+1),−qs+t+(qs+t−1)2+3(qs+t−1), (qs+t−1)2+(qs+t−1))
negative Latin square type PDS in G×G′.

Proof: It is clear that the sets Dk are disjoint and partition the nonidentity elements of
G×G′. Throughout the proof subscripts are mod q.

Let φ be a character on G×G′. Then φ = χ⊗ ψ, where χ is a character on G and ψ is
a character on G′.

If φ is the principal character, then for j 6= 0:

φ(D0
∗) = |D0

∗| = |P0||P ′
0|+ (

∑
i6=0

|Pi||P ′
i |)− 1 = (q2s−1 − qs + qs−1)(q2t−1 + qt − qt−1)

+(q − 1)(qs−1(qs + 1))(qt−1(qt − 1)− 1 = (q(s+t)−1 − 1)(qs+t + 1).

φ(Dj) = |Dj| = |P0||P ′
j|+ |P−j||P ′

0|+ (
∑

i6=0,−j

|Pi||P ′
i+j|) = (q2s−1 − qs + qs−1)(qt−1(qt − 1)

+(qs−1(qs + 1)(q2t−1 + qt − qt−1) + (q − 2)(qs−1(qs + 1))(qt−1(qt − 1) = qs+t−1(qs+t + 1).

Now suppose that φ is a nonprincipal character on G×G′.
Case 1: χ is principal on G, but ψ is nonprincipal on G′. Then χ(P0) = |P0| = (qs−1 −

1)(qs + 1) + 1 = q2s−1 − qs + qs−1 and for i 6= 0, χ(Pi) = |Pi| = (qs−1)(qs + 1) = q2s−1 + qs−1.
ψ will take the values of −qt−1 or qt − qt−1 on the sets P ′

0, P
′
1, · · ·P ′

p−1, and in fact there will
be exactly one Pk for which ψ(P ′

k) = qt − qt−1 and for all l 6= k, ψ(Pl) = −qt−1. Then we
have:

φ(Dk) = χ(P0)ψ(P ′
k) +

∑
m6=0

χ(Pm)ψ(P ′
m+k) =

(q2s−1 − qs + qs−1)(qt − qt−1) + (q − 1)(q2s−1 + qs−1)(−qt−1) = −qs+t + qs+t−1

and for all l 6= k, we get

φ(Dl) = χ(P0)ψ(P ′
l ) + χ(Pk−l)ψ(P ′

k) +
∑
m6=0

χ(Pm)ψ(P ′
m+l)

= (q2s−1−qs +qs−1)(−qt−1)+(q2s−1 +qs−1)(qt−qt−1)+(q−2)(q2s−1 +qs−1)(−qt−1) = qs+t−1.

Case 2: χ is nonprincipal on G, but ψ is principal on G′. Then ψ(P ′
0) = |P ′

0| = (qt−1 +
1)(qt − 1) + 1 = q2t−1 + qt − qt−1 and for i 6= 0, ψ(P ′

i ) = |P ′
i |(qt−1)(qt − 1) = q2t−1 − qt−1.
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χ will take the values of qs−1 or −qs + qs−1 on the sets P0, P1, · · ·Pp−1, and there will be
exactly one Pk for which χ(Pk) = −qs + qs−1 and for all l 6= k, χ(Pl) = qs−1. Then we have:

φ(D−k) = χ(Pk)ψ(P ′
0) +

∑
m6=k

χ(Pm)ψ(P ′
m−k) =

(q2t−1 + qt − qt−1)(−qs − qs−1) + (q − 1)(q2t−1 − qt−1)(qs−1) = −qs+t + qs+t−1

and for all l 6= k, we get:

φ(D−l) = χ(Pl)ψ(P ′
0) + χ(Pk)ψ(P ′

k−l) +
∑

m6=l,k

χ(Pm)ψ(P ′
m−l) =

(q2t−1 + qt − qt−1)(qs−1) + (q2t−1 − qt−1)(−qs + qt−1) + (q − 2)(q2t−1 − qt−1)(qs−1) = qs+t−1.

Case 3: Suppose that both χ and ψ are nonprincipal. Then χ will take the values of
qs−1 or −qs + qs−1 on the sets P0, P1, · · ·Pp−1, and there will be exactly one Pi for which
χ(Pi) = −qs + qs−1 and for all j 6= i, χ(Pj) = qs−1. Also ψ will take the values of −qt−1

or qt − qt−1 on the sets P ′
0, P

′
1, · · ·P ′

p−1, and in fact there will be exactly one Pk for which
ψ(P ′

k) = qt − qt−1 and for all l 6= k, ψ(Pl) = −qt−1. Then we have:

φ(Dk−i) = χ(Pi)ψ(P ′
k) +

∑
m6=i

χ(Pm)ψ(P ′
m+k−i)

= (−qs + qs−1)(qt − qt−1) + (q − 1)(qs−1)(−qt−1) = −qs+t + qs+t−1

and for all l 6= k − i, we get

φ(Dl) = χ(Pi)ψ(P ′
i+l) + χ(Pk−l)ψ(P ′

k) +
∑

m6=i,k−l

χ(Pm)ψ(P ′
m+l)

= (−qs + qs−1)((−qt−1) + (qs−1)(qt − qt−1) + (q − 2)(qs−1)(−qt−1) = qs+t−1.

We have shown that for all nonprincipal characters φ, φ(Di) = −δi(qs+t) + qs+t−1 for
δi = 0, 1 and i 6= 0 and φ(D0

∗) = φ(D0)−1 = −δ0(qs+t)+qs+t−1−1 for δ = 0, 1. Moreover, we
for each nonprincipal character φ there will be precisely one Dk such that δk = 1. Therefore
the result follows from Theorem 1.1.

2

Theorem 2.2 (Product Theorem 2 - Latin × Latin) Let q = pr be a prime power,
and suppose that abelian groups G and G′ have orders q2s and q2t respectively. Suppose
further that G contains Latin square type PDSs P0

∗, P1, ..., Pq−1 that satisfy the criteria for
Lemma 2.1 and G′ posseses Latin square type PDSs P ′

0
∗, P ′

1, ..., P
′
q−1 that satisfy the criteria

of Lemma 2.1.
Define P0 = P0

∗ ∪ {0} and P ′
0 = P ′

0
∗ ∪ {0}.

Then define sets D0
∗, D1, ..., Dq−1 in G×G′ as follows:

(1) D0
∗ = (P0 × P ′

0) ∪ (P1 × P ′
1) ∪ · · · ∪ (Pq−1 × P ′

q−1)− {(0, 0)}, D0 = D0
∗ ∪ {(0, 0)}
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(2) For i 6= 0, Di = (P0 × P ′
i ) ∪ (P1 × P ′

i+1) ∪ · · · ∪ (Pq−i × P ′
0) ∪ · · · ∪ (Pq−1 × P ′

i+q−1), where
the subscripts are mod q.

The sets Di have the following properties:

(1) D0
∗ ∪D1 ∪ · · · ∪Dq−1 = (G×G′)− {(0, 0)},

(2) Di ∩Dj = ∅ for i 6= j,

(3) D0
∗ is a (q2(s+t), (q(s+t)−1 +1)(qs+t−1), qs+t +(qs+t−1 +1)2−3(qs+t−1 +1), (qs+t−1 +1)2−

(qs+t−1 + 1)) Latin square type PDS in G×G′,

(4) For i 6= 0, Di is a (q2(s+t), qs+t−1(qs+t−1), qs+t +(qs+t−1)2−3(qs+t−1), (qs+t−1)2−(qs+t−1))
Latin square type PDS in G×G′.

Theorem 2.3 (Product Theorem 3 - Negative Latin ×Negative Latin) Let q = pr be
a prime power, and suppose that abelian groups G and G′ have orders q2s and q2t respectively.
Suppose further that G contains negative Latin square type PDSs P0

∗, P1, ..., Pq−1 that satisfy
the criteria for Lemma 2.1 and G′ posseses negative Latin square type PDSs P ′

0
∗, P ′

1, ..., P
′
q−1

that satisfy the criteria of Lemma 2.1.
Define P0 = P0

∗ ∪ {0} and P ′
0 = P ′

0
∗ ∪ {0}.

Then define sets D0
∗, D1, ..., Dq−1 in G×G′ as follows:

(1) D0
∗ = (P0 × P ′

0) ∪ (P1 × P ′
1) ∪ · · · ∪ (Pq−1 × P ′

q−1)− {(0, 0)}, D0 = D0
∗ ∪ {(0, 0)}

(2) For i 6= 0, Di = (P0 × P ′
i ) ∪ (P1 × P ′

i+1) ∪ · · · ∪ (Pq−i × P ′
0) ∪ · · · ∪ (Pq−1 × P ′

i+q−1), where
the subscripts are mod q.

The sets Di have the following properties:

(1) D0
∗ ∪D1 ∪ · · · ∪Dq−1 = (G×G′)− {(0, 0)},

(2) Di ∩Dj = ∅ for i 6= j,

(3) D0
∗ is a (q2(s+t), (q(s+t)−1 +1)(qs+t−1), qs+t +(qs+t−1 +1)2−3(qs+t−1 +1), (qs+t−1 +1)2−

(qs+t−1 + 1)) Latin square type PDS in G×G′,

(4) For i 6= 0, Di is a (q2(s+t), qs+t−1(qs+t−1), qs+t +(qs+t−1)2−3(qs+t−1), (qs+t−1)2−(qs+t−1))
Latin square type PDS in G×G′.

3 Groups with Appropriate Latin Square Type PDSs

There are many groups known to contain partial difference sets that satisfy the hypotheses
for Lemma 2.1, especially in the case of Latin square type partial difference sets. For instance,
we have the following:
Example 1: In G = (Zp2)2, let I = pG and for i = 0, ..., p− 1 define the following:

A0,i = (< 1, pi > ∪ < 1, pi+ 1 > ∪ · · · ∪ < 1, pi+ (p− 1) > ∪ < (ip, 1) >) ∩G \ I.

Then we can define the following:
P0 = A0,0 ∪ I

Pi = A0,i ∀ 0 < i ≤ p− 1.
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Lemma 3.1 The sets P0, ...Pp−1 are Latin square type PDSs satisfying the criteria to Lemma
2.1.

Proof Sketch: Let χ be a nonprincipal character on G. If χ has order p2, then χ(A0,j) = p2−p
for some j and χ(A0,i) = −p for all i 6= j. Also, χ(I) = 0. So χ(Pj) = p2−p and χ(Pi) = −p.
If χ has order p, then χ(A0,i) = −p for all i, while χ(I) = p2. Thus χ(P0) = p2 − p, while
χ(Pi) = −p for i 6= 0.

2

Example 2: The sets in G = (Zp4)2 are a bit more complicated; let I = p2G and for
i = 0, ..., p− 1 define the following:

A0,i = (< 1, p3i > ∪ < 1, p3i+1 > ∪ · · · ∪ < 1, p3i+(p3−1) > ∪ < (ip3, 1) > ∪ < (ip3+p, 1) >

∪ · · · ∪ < (ip3 + (p3 − p), 1) >) ∩G \ p3G.

A1,i = (< 1, pi > ∪ < 1, pi+1 > ∪ · · · ∪ < 1, pi+(p−1) > ∪ < 1, p2+pi > ∪ < 1, p2+pi+1 >

∪ · · · ∪ < 1, p2+pi+(p−1) > ∪ < 1, 2p2+pi > ∪ < 1, 2p2+pi+1 > ∪ · · · ∪ < 1, 2p2+pi+(p−1) >

∪ · · · ∪ < 1, (p−1)p2 +pi > ∪ < 1, (p−1)p2 +pi+1 > ∪ · · · ∪ < 1, (p−1)p2 +pi+(p−1) >

∪ < (pi, 1) > ∪ < (p2 + pi, 1) > ∪ · · · ∪ < ((p− 1)p2 + pi, 1) >) ∩ (p3G \ I).
Then we can define the following:

P0 = A0,0 ∪ A1,0 ∪ I

Pi = A0,i ∪ A1,i ∀ 0 < i ≤ p− 1.

Lemma 3.2 The sets P0, ...Pp−1 are Latin square type PDSs satisfying the criteria to Lemma
2.1.

Proof Sketch: Let χ be a nonprincipal character onG. If χ has order p4, then χ(A0,j) = p4−p3

for some j and χ(A0,i) = −p3 for all i 6= j. Also, χ(A1,k) = χ(I) = 0 for all k. So
χ(Pj) = p4 − p3 and χ(Pi) = −p3. If χ has order p3, then χ(A1,j) = p4 − p3 for some j and
χ(A1,i) = −p3 for all i 6= j. Also, χ(A0,k) = χ(I) = 0 for all k. So χ(Pj) = p4 − p3 and
χ(Pi) = −p3. If χ has order p2, then χ(A0,i) = 0 and χ(A1,i) = −p3 for all i, while χ(I) = p4.
Thus χ(P0) = p4 − p3, while χ(Pi) = −p3 for i 6= 0. If χ has order p, then χ(A0,i) = −p5

and χ(A1,i) = p5 − p3 for all i, while χ(I) = p4. Thus χ(P0) = p4 − p3, while χ(Pi) = −p3

for i 6= 0.

2

These sets Ai,j are defined more generally for (Zp2r)2t in [8], and can be used to form the
desired PDSs for our product theorems. The remainder of this section is taken from [8] to
give us the following result, which will be subsequently used in conjunction with Theorem
2.1 to give us the main results from sections 4 and 5.
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Theorem 3.1 For q = pt, every group of the form (Zp2r)2t has Latin square type partial
difference sets P0, P1, ..., Ppt−1 that satisfy the hypotheses of Lemma 2.1.

To prove Theorem 3.1 we will use the structure of Galois rings. If φ1(x) is a primitive
irreducible polynomial of degree t over Fp, then Fp[x]/〈φ1(x)〉 is a finite field of order pt.
Hensel’s lemma states that there is a unique primitive irreducible polynomial φs(x) over Zps

so that φs(x) ≡ φ1(x) mod p and with a root ω of φs(x) satisfying ωpt−1 = 1. Then Zps [ω]
is the Galois extension of Zps of degree t, and furthermore Zps [ω] is called a Galois ring
denoted GR(ps, t). Clearly the additive group of GR(ps, t) is isomorphic to (Zps)t. See [7]
for a detailed description of Galois rings.

An important subset of GR(ps, t) is the Teichmuller set T = {0, 1, ω, ω2, ..., ωpt−2}, which
can be viewed as the set of all solutions to the polynomial xpt−x over GR(ps, t). A canonical
way of uniquely expressing an element of GR(ps, t) is:

α = α0 + pα1 + p2α2 + ...+ ps−1αs−1

where αi ∈ T . We see that the invertible elements are those with α0 6= 0, and if we take
the natural projection (modulo p reduction) from GR(ps, t) to GF (pt), then T maps onto
GF (pt); this projection is given by π(α) = α0 mod p in the representation above.

We define subgroups in GR(ps, t)×GR(ps, t) by the following:

Sis,is−1,...,i2,i1 = {α, (i1 + pi2 + p2i3 + ...ps−2is−1 + ps−1is)α)|α ∈ GR(ps, t)}

Sis,is−1,...,i2,∞ = {((pi2 + p2i3 + ...ps−2is−1 + ps−1is)α, α)|α ∈ GR(ps, t)}
In the above, the subscripts ij ∈ T .

Now we will require that the exponent be even, so let R = GR(p2r, t). Let M be the
additive group of R×R, and let I = prM . We are ready to define the sets Ai,j that will be
used to form our partial difference sets.

A0,j =
⋃

y2r−1,y2r−2,...,y1

Saj ,y2r−1,y2r−2,...,y1 ∩ (M \ pM)

Ai,j =
⋃

y2r−i,...,y2r−2i+1,y2r−2i−1,...,y1

S0,0,...,0,y2r−i,...,y2r−2i+1,aj ,y2r−2i−1,...,y1∩(piM\pi+1M), i ∈ {1, 2, ..., r−1},

where the aj are fixed elements in the Teichmuller set T and the yl are allowed to vary over
all possible values, so yl ∈ T for l 6= 1 and y1 ∈ T ∪∞. The proof of the following lemma on
the sets Ai,j can be found in [8], and is the key component in constructing our Latin square
type PDSs.

Lemma 3.3 Let χ be a character on M = (Zp2r)2t. Then χ is order pk for some integer
k with 0 ≤ k ≤ 2r. If k 6= 2r − l, then χ(Al,i) = χ(Al,j) ∀i, j. If k = 2r − l then
χ(Al,j′) = p2rt − p(2r−1)t for some j′ and χ(Al,j) = −p(2r−1)t for all j 6= j′.

The following sets P ∗
0 , P1, ..., Ppt−1 as given below are the Latin square type PDSs in

(Zp2r)2t that satisfy the criteria to Lemma 2.1.

P0 = (
r−1⋃
i=0

A0,i) ∪ I,
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Pj = (
r−1⋃
i=0

Aj,i), j = 1, 2, ..., pt − 1.

Proof (Theorem 3.1): The sets Pj partition the elements of R×R.
If χ is a character of order pk for 0 < k ≤ r, then by Lemma 3.3 for every i it will be

the case that χ(Ai,j) = χ(Ai,j′) for all j, j′. χ will be trivial on I, so χ(I) = p2rt. Since

χ(M) = χ(
⋃pt−1

j=0 Pj) = 0, a little algebra gives that χ(P0) = p2rt − p(2r−1)t and for j 6= 0,

χ(Pj) = −p(2r−1)t.
If χ is a character of order pk for r < k ≤ 2r, then by Lemma 3.3 for every l with l+k 6= 2r

it will be the case that χ(Al,j) = χ(Al,j′) for all j, j′. Further, χ(I) = 0. For l = 2r − k we
will have by Lemma 3.3 that χ(Al,j′) = p2rt − p(2r−1)t for some j′ and χ(Al,j) = −p(2r−1)t for
all j 6= j′. It follows that χ(Pj′) = p2rt − p(2r−1)t and χ(Al,j) = −p(2r−1)t for all j 6= j′. The
result follows.

2

4 The Prime 2 Case

In the case where we use p = 2 in Theorem 2.1 or Theorem 2.2, we get a weaker version of
the well-known result on reversible Menon-Hadamard difference sets since it is restricted to
2-groups. See [6] for instance. However, when we use q = 4 we are able to generalize the
negative Latin square type PDSs of Davis and Xiang [2,3].

Let G = (Z2)
4 or (Z4)

2, as both have 3 disjoint (16, 5, 0, 2)-PDSs P1, P2, and P3. In
G = (Z2)

4 we have:

P1 = {(1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1), (0, 1, 1, 0)},

P2 = {(0, 1, 0, 0), (0, 0, 0, 1), (1, 1, 1, 1), (0, 1, 1, 1), (1, 1, 0, 1)},

P3 = {(1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 1, 0), (1, 1, 1, 0), (1, 0, 1, 1)},

and we have P0 = {(0, 0, 0, 0)} and P ∗
0 = ∅. In (Z4)

2 we have:

P1 = {(2, 0), (0, 1), (0, 3), (1, 1), (3, 3)},

P2 = {(1, 0), (3, 0), (0, 2), (1, 3), (3, 1)},

P3 = {(1, 2), (3, 2), (2, 1), (2, 3), (2, 2)},

and then P0 = {(0, 0)} and P ∗
0 = ∅. In both cases we have negative Latin square type PDSs

that satisfy the criteria of Lemma 2.1 for q = 4 and s = 1. In this particular case, P ∗
0 is a

degenerate PDS and of course χ(P0) = 1 for all characters χ on G. We can also find four
Latin square type PDSs that satisfy the criteria for Lemma 2.1 in both G′ = (Z2)

4 or (Z4)
2.

In (Z2)
4 we take:

P ′
1 = {(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0)},

P ′
2 = {(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1)},

P ′
3 = {(1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1)},
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P ′∗
0 = G′ \ (P ′

1 ∪ P ′
2 ∪ P ′

3 ∪ {(0, 0, 0, 0)}).

In G′ = (Z4)
2 we take:

P ′
1 = {(1, 0), (2, 0), (3, 0)},

P ′
2 = {(0, 1), (0, 2), (0, 3)},

P ′
3 = {(1, 1), (2, 2), (3, 3)},

P ′∗
0 = G′ \ (P ′

1 ∪ P ′
2 ∪ P ′

3 ∪ {(0, 0)}).

These sets allow us to recursively use Theorem 2.1 to give us the following result.

Theorem 4.1 For nonnegative integers s, t with s+ t ≥ 1, every group of the form (Z2)
4t×

(Z4)
2s has four negative Latin square type PDSs that satisfy the criteria to Lemma 2.1

Setting p = 2 and t = 2 in Theorem 3.1 gives us that there are Latin square type PDSs
P ′

0, P
′
1, P

′
2, and P ′

3 that satisfy the criteria to Lemma 2.1 in all groups of the form (Z22r)4.
Therefore we can combine Theorem 2.1 with Theorem 3.1 to give us the following result.

Lemma 4.1 Let K = (Z2)
4 or (Z4)

2. Then every group of the form K×(Z22r)4 has negative
Latin square type PDSs that satisfy the criteria of Lemma 2.1.

We can then use the preceding lemma and recursive use of Theorem 2.1 to give us the
following siginificant result.

Theorem 4.2 For nonnegative integers s0, s1 with s0 + s1 ≥ 1, every group of the form
(Z2)

4s0 × (Z4)
2s1 × (Z16)

4s2 × · · · × (Z22r)4sr , where the si are nonnegative integers, has
4 negative Latin square type PDSs D∗

0, D1, D2, D3 that satisfy the criteria to Lemma 2.1.

If |G| = 22M , then D∗
0 is a (22M , (2M−2 − 1)(2M + 1),−2M + (2M−2 − 1)

2
+ 3(2M−2 −

1), (2M−2 − 1)
2
+ (2M−2 − 1))-PDS while for i = 1, 2, 3, Di is a (22M , 2M−2(2M + 1),−2M +

(2M−2)
2
+ 3(2M−2), (2M−2)

2
+ (2M−2))-PDS.

5 New Negative Latin Square Type PDSs in 3-groups

In the specific case where q = 3 in Theorem 2.1, we have a similar thing as what occurs for
q = 4. If in the subgroup (Z3)

2 we define sets P0
∗ = ∅, P1 =< 1, 0 > ∪ < 0, 1 > −{0, 0},

and P2 =< 1, 1 > ∪ < 1, 2 > −{0, 0} we can utilize the same construction as in Theorem
2.1 to generate negative Latin square type PDSs in any group of the form (Z3)

2 ×G, where
G is a 3-group that contains Latin square type PDSs satisfying Lemma 2.1.

To demonstrate the construction more clearly, we provide the following examples below.
Example 1: Let G = G′ = (Z3)

2, so we have q = 3 and s = t = 1. In G we define sets
P0

∗ = ∅, P1 =< (1, 0) > ∪ < (0, 1) > −{(0, 0)}, and P2 =< (1, 1) > ∪ < (1, 2) > −{(0, 0)}.
In G′, we have the Latin square type PDSs P ′

0
∗ =< (0, 1) > ∪ < (1, 0) > −{(0, 0)},

P ′
1 =< (1, 1) > −{(0, 0)}, and P ′

2 =< (1, 2) > −{(0, 0)}. Then we define P0 = P0
∗ ∪ {(0, 0)}

and P ′
0 = P ′

0
∗ ∪ {(0, 0)}. Then define sets D0

∗, D1, D2 in G×G′ as follows:

D0
∗ = (P0 × P ′

0) ∪ (P1 × P ′
1)× (P2 × P ′

2)− {0, 0},
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D1 = (P0 × P ′
1) ∪ (P1 × P ′

2)× (P2 × P ′
0),

D2 = (P0 × P ′
2) ∪ (P1 × P ′

0)× (P2 × P ′
1).

D0
∗ is an (81, 20, 1, 6)-PDS, while D1 and D2 are both (81, 30, 9, 12)-PDSs. Moreover, they

satisfy the hypotheses of Lemma 2.1 and can be used in Theorem 2.1. Using this approach
recursively gives us three negative Latin square type PDSs in (Z3)

2t for all integers t ≥ 2.
D0

∗ is a (32t, (3t−1−1)(3t +1),−3t +(3t−1−1)2 +3(3t−1−1), (3t−1−1)2 +(3t−1−1)) negative
Latin square type PDS in G×G′ while both D1 and D2 are (32t, (3t−1)(3t+1),−3t+(3t−1)2+
3(3t−1), (32t−1)2 + (32t−1)) negative Latin square type PDSs.

Example 2: Let G = (Z3)
2 and G′ = (Z9)

2, so we have q = 3, s = 1, and t = 2. In G we
define sets P0

∗ = ∅, P1 =< (1, 0) > ∪ < (0, 1) > −{(0, 0)}, and P2 =< (1, 1) > ∪ < (1, 2) >
−{(0, 0)}. In G′, we have the Latin square PDSs P ′

0
∗ =< (0, 1) > ∪ < (1, 0) > ∪ < (1, 1) >

∪ < (1, 2) > −{(0, 0)}, P ′
1 =< (3, 1) > ∪ < (1, 3) > ∪ < (1, 4) > ∪ < (1, 5) > −3G′ and

P ′
2 =< (6, 1) > ∪ < (1, 6) > ∪ < (1, 7) > ∪ < (1, 8) > −3G′. The sets P ′

0
∗, P ′

1, P
′
2 are PDSs

that satisfy the criteria of Lemma 2.1. Then define sets D0
∗, D1, D2 in G×G′ as follows:

D0
∗ = (P0 × P ′

0) ∪ (P1 × P ′
1)× (P2 × P ′

2)− {0, 0},

D1 = (P0 × P ′
1) ∪ (P1 × P ′

2)× (P2 × P ′
0),

D2 = (P0 × P ′
2) ∪ (P1 × P ′

0)× (P2 × P ′
1).

D0
∗ is an (729, 224, 61, 72)-PDS, whileD1 andD2 are both (729, 252, 81, 90)-PDSs. Moreover,

they satisfy the hypotheses of Lemma 2.1 and can be used in Theorem 2.1. Using this
approach recursively gives us three negative Latin square type PDSs in (Z3)

2s × (Z9)
2t for

all integers s, t ≥ 1 that satisfy the criteria to Lemma 2.1.

Putting this all together, we get the following more general corollary to Theorem 2.1.

Corollary 5.1 There exist negative Latin square type PDSs of two different parameters in
all groups of the form G = (Z3)

2 × (Z3)
2s1 × (Z9)

2s2 × · · · × (Z32k)2sk where the si are
nonnegative integers. If |G| = 32m, then the parameters are (32m, (3m−1− 1)(3m + 1),−3m +
(3m−1 − 1)

2
+3(3m−1−1), (3m−1 − 1)

2
+(3m−1−1) and (32m, (3m−1)(3m+1),−3m+(3m−1)

2
+

3(3m−1), (3m−1)
2
+ (3m−1)).

Notice that the first set of parameters is known, for instance Theorem 2.6 in [6]. The
second set of parameters is a generalization of the (81, 30, 9, 12)-PDS in (Z3)

4. For both
sets of parameters, we have many new examples as all the previous constructions were in
elementary abelian groups.

6 New Latin Square Type PDSs in p-groups

Putting together Theorem 2.2 with Theorem 3.1 yields the following corollary that works
for all primes p.

Corollary 6.1 For all primes p there exist Latin square type PDSs D0
∗, D1, ..., Dp−1 that

satisfy the criteria of Lemma 2.1 in all groups of the form G = (Zp)
2s1 × (Zp2)2s2 × · · · ×

(Zp2k)2sk where the si are nonnegative integers.
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We can use these PDSs to generate more PDSs using the group G as well by using the
methods of [1] (their Theorem 3.2).

Corollary 6.2 Let G = (Zp)
2s1 × (Zp2)2s2 × · · · × (Zp2k)2sk where the si are nonnegative

integers, and let |G| = n2. Let i1, i2, ....il ⊂ {1, ..., p−1}, 1 ≤ l ≤ p−1. Then Di1∪Di2∪· · ·Dil

is an (n2, r1(n− 1), n+ r1
2 − 3r1, r1

2 − r1)-PDS in G. We have n = ps1+2s2+···2ksk = pM and
r1 = l(pM−1). Also D∗

0 ∪Di1 ∪Di2 ∪ · · ·Dil is an (n2, r2(n− 1), n+ r1
2 − 3r1, r1

2 − r1)-PDS
in G where r2 = (l + 1)(pM−1) + 1.

Proof: We prove the first set of parameters. For any nonprincipal character χ on G, we know
that χ(Di) = pM−pM−1 for some 0 ≤ i ≤ p−1, and χ(Dj) = −pM−1∀j 6= i. If i ∈ i1, i2, ....il,
then χ(Di1 ∪Di2 ∪ · · ·Dil) = pM − lpM−1. Otherwise, χ(Di1 ∪Di2 ∪ · · ·Dil) = lpM−1. The
result follows from Theorem 1.1. The proof for the second set of parameters is similar.

2

7 Amorphic Association Schemes

While the results in this paper have been in the area of partial difference sets, they fit quite
nicely into the context of association schemes. Let X be a finite set. An association scheme
with d classes on X consists of sets (binary relations) R0, R1, · · ·Rd that partition X × X
and further that:

(1) R0 = {(x, x)|x ∈ X} (the identity relation);

(2) Rl is symmetric ∀l;

(3) ∀i, j, k ∈ {0, 1, 2, · · · d} there is an integer pk
ij such that given any pair (x, y) ∈ Rk,

|{z ∈ X|(x, z) ∈ Ri and (z, y) ∈ Rj}| = pk
ij.

Each of the symmetric relations Rl can be interpreted as an undirected graph with vertex
set X and edge set Rl, Gl = (X,Rl) for all l. Then we can think of an association scheme
as a decomposition of the complete graph with X as the vertex set into the graphs Gl with
the property that for i, j, k ∈ {1, 2, · · · d} and for every xy ∈ E(Gk),

|{z ∈ X|xz ∈ E(Gi) and zy ∈ E(Gj)}| = pk
ij,

where E(Gi) denotes the edge set of graph Gi. These graphs Gi are called the graphs of the
association scheme. A strongly regular graph is an association scheme with two classes.

Given an association scheme, we can take unions of classes to produce graphs with larger
edge sets, a so called fusion. Fusions are not necessarily themselves association schemes, but
when a particular association scheme does have the property that any of its fusions is also
an association scheme we call the scheme amorphic. For a thorough treatment of association
schemes, see [12].

Partial difference sets give rise to strongly regular Cayley graphs. When we partition
the groups as in Lemma 2.1 into partial difference sets, we can think of this as partitioning
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the complete graph with vertex set the group elements into strongly regular graphs of Latin
square type or negative Latin square type. A theorem of Van Dam [11] will allow us to put
the results in this paper in the context of association schemes.

Theorem 7.1 Let {G1, G2, · · ·Gd} be an edge-decomposition of the complete graph on a set
X, where each Gi is strongly regular. If the Gi are all of Latin square type or all of negative
Latin square type, then the decomposition is a d-class amorphic association scheme on X.

Every result in this paper involves a partitioning of the p-group G into Latin square type
or negative Latin square type partial difference sets. Therefore, the results would fit well
into the context of association schemes. In particular, using Theorem 4.2 and Corollary 5.1
in conjunction with Theorem 7.1 we have the following corollaries.

Corollary 7.1 The strongly regular Cayley graphs associated to the negative Latin square
PDSs in Theorem 4.2 form a 4-class amorphic association scheme on G = (Z2)

4s0×(Z4)
2s1×

(Z16)
4s2 × · · · (Z22r)4sr , where the si are nonnegative integers and s0 + s1 ≥ 1.

Corollary 7.2 The strongly regular Cayley graphs associated to the negative Latin square
PDSs in Corollary 5.1 form a 3-class amorphic association scheme on G = (Z3)

2× (Z3)
2s1 ×

(Z9)
2s2 × · · · × (Z32k)2sk .

In [3], Davis and Xiang constructed 4-class amorphic association schemes in nonelemen-
tary abelian 2-groups using negative Latin square type partial difference sets. Corollary 7.1
introduces 4-class amorphic association schemes associated with some groups that are not a
part of their construction, in particular all of those groups with characteristic greater than
4. It is believed that Corollary 7.2 gives the first amorphic association scheme derived from
negative Latin square type PDSs in nonelementary abelian p-groups for p 6= 2. Notice that
it includes both elementary abelian and nonelementary abelian examples.

The product theorems in this paper were already shown to be useful in the construction
of both Latin square type partial difference sets and negative Latin square partial difference
sets. Moreover, they also yielded amorphic assocation schemes derived with negative Latin
square type graphs in nonelementary abelian 3-groups. It seems quite likely that they will
lead to further results as there are numerous constructions of both Latin square type and
negative Latin square type PDSs that could be analyzed for use with Theorems 2.1, 2.2, and
2.3.
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