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Abstract

By modifying a construction for Hadamard (Menon) difference sets we construct
two infinite families of negative Latin square type partial difference sets in groups of
the form Z3

2 × Zp
4t where p is any odd prime. One of these families has the well-

known Paley parameters, which had previously only been constructed in p-groups.
This provides new constructions of Hadamard matrices and implies the existence of
many new strongly regular graphs including some that are conference graphs. As a
corollary, we are able to construct Paley-Hadamard difference sets of the Stanton-
Sprott family in groups of the form Z3

2 × Zp
4t × Z9p4t±2 when 9p4t ± 2 is a prime

power. These are new parameters for such difference sets.

1 Introduction

Let G be a finite group of order v, and let D be a subset of G with cardinality k. Then D
is a (v, k, λ)-difference set (DS) if the list of differences d1d

−1
2 , d1, d2 ∈ D represents every

nonidentity element in G exactly λ times. A difference set, D, is called reversible if d ∈ D
implies d−1 ∈ D. Hadamard (Menon) difference sets, having parameters (4u2, 2u2 −
u, u2 − u), are of particular interest due to the fact that their ±1 incidence matrices
form Hadamard matrices. The text of Beth, Jungnickel, and Lenz [1] and the survey of
Jungnickel [7] are excellent references for DSs.

Similarly, suppose G is a finite group of order v with a subset D of order k such that
the differences d1d2

−1 for d1, d2 ∈ D, d1 6= d2 represent each nonidentity element of D
exactly λ times and the nonidentity element of G−D exactly µ times. Then D is called
a (v, k, λ, µ)-partial difference set (PDS) in G. When the identity e 6∈ D and D(−1) = D
we call the PDS D regular. The survey article of Ma is a very good survey on PDSs [9].
A partial difference set having parameters (n2, r(n + 1),−n + r2 + 3r, r2 + r) is called a
negative Latin square type PDS.

Another important family of difference sets is the Paley-Hadamard difference sets hav-
ing parameters (v, v−1

2 , v−3
4 ). When such a difference set also has the property that G

is the disjoint union of D, the inverses of the elements of D, and 0, it is called a skew
Hadamard difference set. Closely related to Paley-Hadamard difference sets are Paley type
partial difference sets, having parameters (v, v−1

2 , v−5
4 , v−1

4 ). Paley originally discovered
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these sets [10] along with the Paley-Hadamard difference sets in the context of Hadamard
matrices, and in fact both Paley PDSs and Paley-Hadamard difference sets can be used to
construct both Hadamard designs and matrices. In the survey of Ma [9] were the following
questions:

“Questions 13.4. Suppose G is an abelian group of order v ≡ 1(mod 4). If v is not a
prime power, does there exist a Paley PDS in G? If v is a prime power, does G need to
be elementary abelian?”

The articles of Davis as well as Leung and Ma give various constructions of Paley
partial difference sets in p-groups ([3], [8]) that are not elementary abelian and thus answer
the second question. In this paper, we will give the first construction of Paley PDSs in
groups having an order which is not a prime power and therefore provide the first positive
answer to the first of the questions. Using these Paley PDSs, we will also construct
Paley-Hadamard DSs with new parameters.

There have also been relatively few constructions of negative Latin square type par-
tial difference sets. Originally most of these were in nonelementary abelian groups, [9].
Recently, there have been constructions given in nonelementary abelian p-groups such as
Davis and Xiang in [5] and Polhill [11]. Jørgensen and Klin [6] constructed negative Latin
square type PDSs in groups of order 100. In this paper, we will not only construct the Pa-
ley PDSs but another pair of families of negative Latin square type PDSs in non p-groups
as well.

Regular partial difference sets generate Cayley graphs which are strongly regular, and
in particular the Paley-type and negative Latin square type PDSs give rise to conference
graphs and negative Latin square type strongly regular graphs respectively.

Often DSs and PDSs are studied within the context of the group ring Z[G]. For a
subset D in G we can write D =

∑
d∈D d and D(−1) =

∑
d∈D d

−1. This is abuse of notation
which is widely accepted; so that depending on the context D will represent the difference
set D or the element

∑
d∈D d in the group ring Z[G]. Character theory is frequently used

to simplify calculations with difference sets and partial difference sets in abelian groups.
Turyn [13] and separately Yamamoto [18] first used character theory to study abelian
difference sets. A character on an abelian group G is a homomorphism from the group to
the complex numbers with modulus 1. The principal character is 1 on all the elements of
G; any other character is called nonprincipal. One can naturally extend a character on
G to a homomorphism of the group ring Z[G] as follows: if χ is a character on G, then
for an element A =

∑
g∈G agg let χ(A) =

∑
g∈G agχ(g) so that if S is a subset of G, then

χ(S) =
∑

s∈S χ(s). See [13] for a proof of similar results to the following.

Theorem 1.1 (a) Let G be an abelian group of order v with a subset D of cardinality k
and let λ be a positive integer satisfying λ(v−1) = k(k−1). Then D is a (v, k, λ)-difference
set in G if and only if for every nonprincipal character χ on G, |χ(D)| =

√
k − λ.

(b) Let G be an abelian group of order v with a subset P of cardinality k such that
0 6∈ P with k2 = k + λk + µ(v − k − 1) for positive integers λ and µ. Then P is a
(v, k, λ, µ)-partial difference set in G if and only if for every nonprincipal character χ on

G, χ(P ) = (λ−µ)±
√

(λ−µ)2+4(k−µ)

2 .
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2 Known Constructions of Hadamard Difference Sets

Of particular relevance to this paper is the Hadamard difference set construction for K ×
Zp

4t where |K| = 4 and p is an odd prime. Xia first constructed such difference sets for
p ≡ 3 mod 4 in [16], and a simplified construction was given by Xiang and Chen [17] using
the additive characters of finite fields. Then Wilson and Xiang [15] related the existence
of this type of difference sets to certain projective sets, and finally Chen used their work
to construct Hadamard difference sets in all groups K × Zp

4t for |K| = 4 and p an odd
prime [2].

Let PG(k− 1, q) denote the projective space of dimension k− 1 over Fq for q a power
of a prime; the corresponding vector space V (k, q) for PG(k − 1, q) will have dimension
k over Fq. The elements of PG(k − 1, q) are the subspaces of V (k, q), and, in particular,
a projective point is a 1-dimensional subspace, a projective line is a 2-dimensional space,
and a hyperplane is a (k − 1)-dimensional subspace. A projective (n, k, h1, h2) set O is
a proper subset of the projective space PG(k − 1, q) with n points (n 6= 0) so that O
intersects every hyperplane in h1 or h2 points. If we have that O = {〈y1〉, 〈y2〉, ..., 〈yn〉}
then let Ω = {x ∈ V (k, q)|〈x〉 ∈ O}. The following lemma shows that O is a projective set
if and only if Ω is a PDS in the additive group of the corresponding vector space under
certain conditions. Wilson and Xiang have this result in [15].

Lemma 2.1 O is a projective (n, k, h1, h2) set if and only if χ(Ω) = qh1 − n or qh2 − n
for every nonprincipal additive character.

Using this lemma we see that O is a projective (n, k, h1, h2) set if and only if Ω is a
PDS in the additive group of V (k, q) provided that K2 = K + λK + µ(v −K − 1) (K is
the cardinality of Ω, while λ and µ are the usual PDS parameters).

Now consider the projective space Σ3 = PG(3, q) for an odd prime power q = pt. The
additive group of the corresponding vector space is Zp

4t. Define a spread of Σ3 to be a
set of q2 + 1 projective lines which are pairwise disjoint and partition the points of Σ3.
Finally, a subset of Type Q is a projective ( q4−1

4(q−1) , 4,
(q−1)2

4 , (q+1)2

4 ) set in Σ3.

Theorem 2.2 (Xiang-Wilson [15]) Suppose that S = {L1, L2, ..., Lq2+1} is a spread
of Σ3. If there exist two subsets of Type Q, C0 and C1, in Σ3 with the property that
|C0 ∩Li| = (q+ 1)/2 for 1 ≤ i ≤ q2+1

2 and |C1 ∩Lj | = (q+ 1)/2 for q2+1
2 + 1 ≤ j ≤ q2 + 1,

then there exists a Hadamard difference set in K × Zp
4t for |K| = 4.

We make some observations regarding this Theorem. If two such subsets of Type Q
exist, then the sets

C2 = ∪
1≤i≤ q2+1

2

Li \ C0 and

C3 = ∪ q2+1
2

+1≤j≤q2+1
Lj \ C1

are also subsets of Type Q.
Now let W = V (k, q) be the underlying vector space of Σ3. Then let Ci = {w ∈

W |〈w〉 ∈ Ci} and Li = {w ∈W |〈w〉 ∈ Li}.
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Each of the four subsets Ci in Σ3 gives rise to a PDS Ci in V (4, q) such that the
character values of each are either q2−1

4 or q2−1
4 − q2 for nonprincipal additive characters

on V (4, q). The character sum will be q2−1
4 − q2 for exactly one of the sets C0, C1, C2, C3

for any nonprincipal character.
To each of C0 and C2 we will add q2−1

4 of the sets Lj which are disjoint from C0 and
C2; we call this collection of q2−1

4 projective lines B1 with corresponding set B1 = {w ∈
W |〈w〉 ∈ B1}. The character sum on B1 will be either − q2−1

4 or q2 − q2−1
4 , and when

combined with the PDSs from subsets of Type Q, the character sums are either 0 or ±q2.
We similarly add q2−1

4 of the sets Li (disjoint from C1 and C3) to C1 and C3, and call
this collection B0. When we take the four sets

D0 = C0 ∪ B1, D1 = C1 ∪ B0, D2 = C2 ∪ B1, D3 = C3 ∪ B0,

the character sums will be such that for any nonprincipal character χ onG = Zp
4t, χ(Di) =

±q2 for exactly one i and χ(Dk) = 0 for all other k. Then the four sets G \D0, D1, D2, D3

form a (p4−p2

2 , p2, 4,+) covering extended building set using the terminology from [4], so
that if K = {a0, a1, a2, a3} then

H = a0(G \D0) ∪ a1D1 ∪ a2D2 ∪ a3D3

is a Hadamard difference set in K × Zp
4t.

We form two more sets B2 and B3 as follows: B2 = (C0∪C2)\B0 and B3 = (C1∪C3)\B1

so that each of B2 and B3 are unions of q2+3
4 projective lines. The properties of character

sums on the Bi are given in the following lemma.

Lemma 2.3 Let χ be a nonprincipal character on V (4, q). Then χ(B0), χ(B1) ∈ {− q2−1
4 , q2−

q2−1
4 } and χ(B2), χ(B3) ∈ {− q2+3

4 , q2 − q2+3
4 }. Furthermore, exactly one Bi will have a

positive character sum.

Proof: The character sums immediately follow from Theorem 1.1. The fact that there will
be exactly one positive character sum follows from the fact that Σ3 = B0 ∪B1 ∪B2 ∪B3.

Now we wish to form two more sets L and M in the additive group of V (4, q). L =
B1 ∪ B2. The set L, viewed projectively, is a union of q2+1

2 projective lines, and in fact
is a Paley-type PDS in the additive group of V (4, q). The set M = B2 ∪ B3, viewed
projectively, is a union of q2+3

2 lines and is also a PDS in the additive group of V (4, q).
These PDSs have special properties with respect to the sets Di as given in the following
key Lemmas.

Lemma 2.4 Let χ be a nonprincipal character on V (4, q). For i = 0 or 2, if χ(G \Di) =
±q2 then χ(L) = ∓q2−1

2 . For i = 1 or 3, if χ(Di) = ±q2 then χ(L) = ∓q2−1
2 .
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Proof: There will be exactly one Li on which χ is principal. Suppose χ(D0) = q2 so
χ(G \ D0) = −q2. Then it must be the case that χ(B1) is positive. It follows that
χ(L) = q2−1

2 . If instead χ(D0) = −q2 then χ(G \ D0) = q2. It follows that χ(B1) is
negative. Moreover, χ(C0) = q2−1

4 − q2 so that χ(C0 ∪ C2) = χ(B0 ∪ B2) = −q2−1
2 . This

ensures that χ(B0) and χ(B2) must both be negative. Then it must be the case that χ(B3)
is positive, so that χ(L) = −q2−1

2 . The cases i 6= 0 are similar.

Lemma 2.5 Let χ be a nonprincipal character on V (4, q). If χ(Di) = ±q2 then χ(M) =
∓q2−3

2 .

3 Paley PDSs in Non p-Groups

Let G = Zp
4t. Using the same sets Di ⊂ G as in Xiang-Wilson’s Theorem above, we can

replace the group K with Z3
2 and will be able to form negative Latin square type PDSs

in any group of the form G′ = Z3
2×G. Let H0,H1,H2, and H3 be the subgroups of order

3 in Z3
2. Hi

∗ = Hi \ {(0, 0)} so that Hi
∗ ∩Hj

∗ = ∅ for i 6= j. This will ensure that the set
D given in Theorem 3.1 is not a multiset.

Theorem 3.1 (Paley partial difference sets in non p-groups) Let G′ = Z3
2 × G

where G = Zp
4t for an odd prime p. Then the set D = ({(0, 0)}×L)∪ (H0

∗× (G \D0))∪
(H1

∗ × D1) ∪ (H2
∗ × (G \ D2)) ∪ (H3

∗ × D3) is a (9p4t, 9p4t−1
2 , 9p4t−5

4 , 9p4t−1
4 ) Paley-type

PDS in G′.

Proof: First we check to see that D has the correct cardinality.

|D| = |L|+2|G\D0|+2|D1|+2|G\D2|+2|D3| =
p4t − 1

2
+4|G| = p4t − 1

2
+4p4t =

|G′| − 1
2

.

Suppose that φ is a nonprincipal character on G′ = Z3
2 ×G. Then φ = χ⊗ ψ, where

χ is a character on Z3
2 and ψ is a character on G. To use Theorem 1.1, we need to show

that φ(D) = ±3p2t−1
2 .

Case 1: χ is principal on Z3
2, but ψ is nonprincipal on G. Then χ(Hi

∗) = 2 for all i.
ψ(Dj) = ±q2 = ±p2t for exactly one j, and ψ(Di) = 0 for i 6= j. If j = 1 or 3 then by
Lemma 2.4, if ψ(Dj) = p2t then ψ(L) = −p2t−1

2 while if ψ(Dj) = −p2t then ψ(L) = p2t−1
2 .

We will have then:

φ(D) =
±p2t − 1

2
+ 2(∓p2t) =

∓3p2t − 1
2

.

A similar argument works for j = 0 or 2.
Case 2: χ is nonprincipal on Z3

2, but ψ is principal on G. Then ψ(L) = p4t−1
2 ,

ψ(G \Di) = |G \Di| = p4t+p2t

2 , and ψ(Di) = |Di| = p4t−p2t

2 . χ will be principal on exactly
one of the Hj so that χ(H∗

j ) = 2 while χ(H∗
i ) = −1 for i 6= j. If j = 0 or 2 we get:

χ(D) = |L|+ (2− 1)(
p4t + p2t

2
) + (−1− 1)(

p4t − p2t

2
) =

3p2t − 1
2

.
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If j = 1 or 3 we get:

φ(D) = |L|+ (−1− 1)(
p4t + p2t

2
) + (2− 1)(

p4t − p2t

2
) =

−3p2t − 1
2

.

Case 3: Suppose that both χ and ψ are nonprincipal. Then χ will be principal on
exactly one of the Hk so that χ(H∗

k) = 2 while χ(H∗
i ) = −1 for i 6= k. ψ(Dj) = ±q2 = ±p2t

for exactly one j, and ψ(Di) = 0 for i 6= j. If j = 0 or 2 then by Lemma 2.4, if
ψ(G \ Dj) = p2t then ψ(L) = −p2t−1

2 while if ψ(G \ Dj) = −p2t then ψ(L) = p2t−1
2 . If

k = j we get:

φ(D) =
±p2t − 1

2
+ 2(∓p2t) =

∓3p2t − 1
2

.

If k 6= j then we get:

φ(D) =
±p2t − 1

2
− 1(∓p2t) =

±3p2t − 1
2

.

A similar argument works for j = 1 or 3.

We have hence provided a method to construct Paley PDSs in certain groups having
an order that is not a prime power. The following theorem gives another family of negative
Latin square type PDSs that will generate a family of negative Latin square type graphs
with number of vertices that is not a prime power. We omit the proof since it is extremely
similar to the previous.

Theorem 3.2 Let G′ = Z3
2 × G where G = Zp

4t for an odd prime p. Then the set
S = ({(0, 0)}×M)∪ (H0

∗×D0)∪ (H1
∗×D1)∪ (H2

∗×D2)∪ (H3
∗×D3) is a (9p4t, r(3p2t +

1),−3p2t + r2 + 3r, r2 + r)-negative Latin square type PDS in G′ for r = 3p2t−3
2 .

We can also get another set of parameters for negative Latin square type partial dif-
ference sets by taking T = (G′×G)∗ \S. As an example, in the group Z3

2×Z5
4 we obtain

from Theorem 3.1 a (752, 37(75+1),−75+372 +3(37), 372 +37)-Paley PDS which we call
D. From Theorem 3.2 we obtain PDSs S and T which are (752, 36(75 + 1),−75 + 362 +
3(36), 362 + 36)- and (752, 38(75 + 1),−75 + 382 + 3(38), 382 + 38)-negative Latin square
type partial difference sets. Thus we have three strongly regular graphs D,S, and T of the
negative Latin square type on 752 = 5625 vertices, having degrees 2812, 2736, and 2888
respectively. The Cayley graph from D will in particular be a conference graph.

4 New Paley-Hadamard Difference Sets

We will now show how the Paley PDSs constructed in Theorem 3.1 can be used to construct
new Paley-Hadamard difference sets. The following is due to Stanton and Sprott [12].

Theorem 4.1 Suppose that q and q + 2 are both prime powers. Then there is a (q(q +
2), q(q+2)−1

2 , q(q+2)−3
2 )-Hadamard difference set in EA(q)×EA(q+2), where EA(q) denotes

the elementary abelian group or order q and is the additive group of Fq.
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In [14], there are the following generalizations of Stanton and Sprott’s earlier result.

Theorem 4.2 Suppose that the group G has a (v, v−1
2 , v−5

4 , v−1
4 )-Paley partial difference

set P with 0 6∈ P and that the group G′ having order v + 2 has a (v + 2, v+1
2 , v−1

4 )-skew
Hadamard difference set S. Then D = (G× {0}) ∪ (P × S) ∪ ((G∗ \ P )× (G′∗ \ S)) is a
(v(v + 2), v(v+2)−1

2 , v(v+2)−3
4 )- Paley-Hadamard difference set in the group G×G′.

Theorem 4.3 Suppose that the group G has a (v, v−1
2 , v−5

4 , v−1
4 )-Paley partial difference

set P with 0 6∈ P and that the group having order v − 2 has a (v − 2, v−3
2 , v−5

4 )-skew
Hadamard difference set S. Then D = ({0} ×G′) ∪ (P × S) ∪ ((G∗ \ P )× (G′∗ \ S)) is a
(v(v − 2), v(v−2)−1

2 , v(v−2)−3
4 )- Paley-Hadamard difference set in the group G×G′.

Combining Theorem 3.1 with these two results we can get new Stanton-Sprott differ-
ence sets. These difference sets will have parameters distinct from previous constructions.
A few examples of such Paley-Hadamard DSs are in the following groups: Z3

2×Z5
4×Z5623,

Z3
2×Z5

8×Z3515623, Z3
2×Z5

12×Z2197265627, Z3
2×Z7

4×Z21611, and Z3
2×Z7

8×Z51883211.
In each case, we have a Paley PDS from Theorem 3.1 in the first two components and a
skew Hadamard difference set in the latter component since the latter is Zp for a prime
p ≡ 3(mod 4). We summarize with the following corollary.

Corollary 4.4 Suppose that for an odd prime p that 9p4t ± 2 is a prime power. Then
there is a Paley-Hadamard difference set in Z3

2 × Zp
4t × Z9p4t±2.
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