

Chapter Outline

- Simple experiments
- Two-sample hypothesis testing
- Distinguishing between independent and correlated
- samples designs
- Calculation of t
 - Independent samples
 - Correlated samples
- Assumptions that accompany t
- Effect size
- Power
- Practical vs. statistical significance

Homework problems

- Homework problems should be done both by hand and in SPSS until clearly understanding and able to run in SPSS w/o difficulty
- Problems on handout we will do in class both ways, work on your own ASAP

Simple experiment steps (p 201)

- Identify population
- RANDOMLY assign to groups
- Administer treatment (IV) [treatment A]
- Measure performance/behavior (DV) [task Q]
- Calculate means for groups (Descr. Stats.) $\overline{X}_{e} \& \overline{X}_{c}$
- Calculate effect size index
- Compare group means (Inferential statistics)
- Write a conclusion-in terms of original question

Experiments

- allow causal statements
- ■by randomly assigning to groups we've ruled out alternatives
- ■left with our intervention

Two-sample hypothesis testing (p 203-204)

- two possibilities null and alternative hypothesis
- $\dot{H_0}$: no effect, mean score for those receiving the treatment is equal to the mean for those not receiving [text – A vs. noA] $H_0: \mu_{treat} - \mu_{no treat} = 0 \text{ or } H_0: \mu_{treat} = \mu_{no treat}$ $H_1: \mu_{treat} \neq \mu_{no treat}$ (2 tailed) or either $H_1: \mu_{treat} > \mu_{no treat}$ or $\mu_{treat} < \mu_{no treat}$ (1 tailed)

Two-sample hypothesis testing

- assume equality hypothesis correct If null true: samples vary only by extent of sampling error
- select alpha level (almost always will be .05)
- choose an inferential statistic (for now just need to decide which t, independent or correlated samples)
- calculate test statistic from sample data

Two-sample hypothesis testing

- compare the test statistic with the critical value from the statistic's sampling distribution
 - □ if the t value obtained from the data exceeds t critical (or probability < alpha) we can reject the null
 - □ if probability is greater than alpha (or statistic doesn't exceed critical value) retain the null.
- formulate a conclusion/interpretation again in the terms of the original question

Independent vs. correlated t tests

- basic idea is taking a difference observed, divide by standard error of the difference giving a t statistic
- Three types of correlated designs:
 - Natural pairs
 - □ Matched pairs
 - □ Repeated measures
- Independent samples
 no way to pair observations

Independent samples T					
Lazarus	Detached	Involved			
data	23	31			
Do by hand	21	27			
Later in	19	24			
SPSS,	15	23			
answers should match	14	21			
	12	14			
	10				

Effect size

- Cohen's d statistic, same as one-sample case
- Interpretation is identical
- Tells us how much of an effect the independent variable had

Correlated samples t-test
• df = N - 1 where N = number of pairs of scores

$$t = \frac{\overline{X} - \overline{Y}}{s_{\overline{D}}}$$
• Formula illustrates effect r has

$$s_{\overline{D}} = \sqrt{s_{\overline{X}}^{2} + s_{\overline{Y}}^{2} - 2r_{XY}(s_{\overline{X}})(s_{\overline{Y}})}$$

Direct difference method
• does not require calculating r first

$$t = \frac{\overline{X} - \overline{Y}}{s_{\overline{D}}} = \frac{\overline{X} - \overline{Y}}{\hat{s}_D / \sqrt{N}} \hat{s}_D = \sqrt{\frac{\Sigma D^2 - \frac{(\Sigma D)^2}{N}}{N-1}}$$
• D = X - Y
• N = number of pairs of scores

Correlated Samples t – example					
Two cats	Littermates	No Experimental	Experimental		
		Neurosis	Neurosis		
litter randomly	1	63	88		
	2	59	90		
	3	52	74		
assigned to	4	51	78		
each group	5	46	78		
Amount of	6	44	61		
alcohol laced	7	38	54		
milk they drank was measured	 Perform a t-test, an effect size index and calculate 99% confidence interval. 				

٣

Assumptions of t

- dependent variable normally distributed
- dv variance = across groups
- samples randomly selected
- t test is robust to violations of assumptions

Final issues

- Power
 - \square only way we are able to control power is via sample size
 - □ comparing groups want to be certain we're using a relatively sensitive measure that will reveal group differences of a reasonable magnitude
- Practical vs. statistical significance
 - Finding statistical significance tells us nothing about the practical or clinical significance of a research finding – effect size plays a role here