
Chapter 4 

Regression Analysis 

1. Introduction 
Whereas correlation analysis provides us with a summary coefficient of the 

extent of relationship between two variables, regression analysis provides us 
with an equation describing the'nature of the relationship between two varia­
bles. In addition, regression analysis supplies variance measures which allow us 
to assess the accuracy with which the regression equation can predict values on 
the criterion variable, making it more than just a curve-fitting technique. 

While the basic model underlying regression analysis is designed for 
experimental data in which the levels of the predictor variable are selected or 
fixed by the investigator, with objects then assigned at random to these levels, 
the technique can be, and usually is, used to describe the relationship between 
correlated random variables, where the investigator has no control over the 
values assumed by the objects on the predictor variable; e.g., the relationship 
between student grade averages and intelligence test scores, or between the 
crime rates and unemployment rates of cities, or between crop yields and 
rainfall levels. There are no severe consequences to this type of application of 
the basic regression technique, provided the predictor variables are measured 
with high accuracy. . 

Examples of the types of experimental relationships that can be stud~ed 
with regression analysis are many. For example, we might want to deter~me 
the nature of the· relationship between crop yield and levels of fertilizer 
application, between student test performance and hours of instruction, be­
tween disease duration and drug dosage, between blood pressure and con­
trolled dietary salt levels, between product sales and systematically varied 
advertising levels, between maladaptive behavior frequencies and hours of 
therapy, between bacteria growth and culture medium concentrations, etc. . 

While regression analysis can be used with both correlational and expen­
mental data, we will concentrate in this chapter on its application to the former 
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type, in order to capitalize on the discussions of the preceding chapter. The 
treatment of experimental data will be addressed in the following chapter on 
Analysis of Variance, an analytical approach related to regression analysis in 
its purpose. 

2. Overview of Regression Analysis 

The recurrent theme of prediction appeared throughout our discussion of 
correlation analysis. While it seemed intuitively clear that the greater the 
degree of correlation between two variables, the more likely we would be to 
accurately predict values on one from a knowledge of values on the other, we 
never learned a specific procedure for accomplishing the prediction. In regres­
sion analysis we have such a technique. 

The concept of regression analysis- which could well be called prediction 
analysis-will be easy to understand since much of the spade work has already 
been done in our study of correlation analysis. Not only will correlation 
analysis help us in our understanding of regression analysis, but regression 
analysis will deepen our understanding of correlation analysis. 

Just as there is the simple correlation coefficient to measure the degree of 
relationship between two variables, and the multiple correlation coefficient to 
measure the degree of relationship between a set of predictor variables and a 
criterion variable, there is both simple and multiple regression analysis. In 
simple regression we are interested in predicting an object's value on a criterion 
variable, given its value on one predictor variable. In the case of multiple 
regression we are interested in predicting an object's value on a criterion 
variable when given its value on each of several predictor variables. We will 
begin our study with simple regression, and then discover how we can 
generalize the concept to the multiple regression situation. 

Objectives. The overall objectives of regression analysis can be sum­
marized as follows: (I) to determine whether or not a relationship exists 
between two variables, (2) to describe the nature of the relationship, should 
one exist, in the form of a mathematical equation, (3) to assess the degree of 
accuracy of description or prediction achieved by the regression equation, and 
(4) in the case of multiple regression, to assess the relative importance of the 
various predictor variables in their contribution to variation in the criterion 
variable. 

We will touch upon each of these issues,,,though not in the stated order, 
since for expositional reasons it is more logical to start with the second named 
objective-identifying the mathematical equation which describes the relation­
ship between the variables in question. 

What might a regression equation look like? Let us begin by looking at the 
values of several objects on two variables to see if we can gain some insight 
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into the nature of the desired equation: 

Object 1 
Object 2 
Object 3 
Object 4 
Object 5 

Value on 
variable x 

8 
5 

11 
4 

14 

Value on 
variable y 

31 
22 
40 
19 
49 

The objects and variables x and y in this example are left unidentified but 
could well correspond to any of those named in the introductory section. 
Before reading on, it will be worthwhile to study the above pairs of values to 
see if you can identify a systematic relationship between an object's value on 
variable y and its value on variable x. 

It could be noticed, for instance, that the value on variable y is greater than 
the corresponding value on variable x. But we can be more precise. We can say 
that the value on variable y is 'more than triple the value on variable x. A closer 
examination will show that the value on variable y is exactly three times the 
value on variable x plus seven. In short-hand notation we can specify the 
relationship as y = 3x + 7, which is nothing more than to say that an object's 
value on variable y is equal to three times its value on variable x plus seven. By 
convention, though, we often write the equation with the constant term first, 
y=7+3x. . 

Linear equations. For those who have not already recognized it, based on 
a study of elementary algebra, y = 7 + 3x is the equation of a specific straight 
line. Figure 1 presents a refresher course on the characteristics of a straight 
line, or linear junction. The equation y = 7 + 3x is but a specific instance of the 
general equation of a line 

y=a+bx 

The value of b is referred to as the slope of the line; i.e., its inclination, or the 
rate of change in the value of the variable y for a unit change in value of the 
variable x. The higher the value of b, the steeper the slope. 

The value of a, or the constant term, represents the value of y when x = 0, 
or in other words the value of y where the line intercepts the y axis. It is, in 
fact, referred to as the y-intercept. In the equation y = 7 + 3x, the slope is 3 and 
the y-intercept is 7. Notice, however, in Figure Ib that the physical appearance 
of the slope of the line is very arbitrary, depending to a great extent on how 
stretched out or compressed we make the scale on the y or x axes. 

Returning now to the five pairs of values that were found to be related 

OVERVIEW OF JU\'17Kr.:>~.J' 

(a) General form of a linear equation 

y = a +bx 

Change in value 
of variable x 

----- a = y-intercept 

Variable x 

Change in value 
of variable y 

b=slo e= Changeiny 
p Change on x 

(b) An example of a linear equation 

~ 

Ii 40 Value on :e / variable y 
.e30 -------
'" (5.22) 

b =slope=9/3=3 

..!l (4.19) •• 3 

~ I Value on 
" > I variable x 

o a=y-intercept=7:/ 

o 2 4 6 8 10 12 14 16 18 20 
Variable x I arbitrary units) 

Figure 1 Characteristics of a linear equation. 
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exactly by the equation y = 7 + 3x, note in Figure lb how they lie exactly on 
the line representing the equation. In real life, however, rarely do we find data 
that are so perfectly related. More often, we will only be able to say that the 
value on variable y is approximately equal to 7 + 3x, as illustrated by the pairs 
of values shown below: 

Value on Value on 
variable x variable y 

Object 6 7 26 
Object 7 3 18 
Object 8 6 30 
Object 9 8 28 
Object 10 7 30 

As .an exercise, plot these five data points onto Figure lb to see how they 
deVIate from the given line; and yet see how the line does represent a fair 
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description of the relationship between the pairs of values. 
The importance of the linear equation is that we will be limiting our 

discussion to data that are linearly related, excluding such non-linear relation­
ships as shown earlier in Figure 5b of Chapter 3. But this is not too severe a 
limitation since many relationships that we encounter are linear in form, and 
of those that are not, many can be made linear with appropriate data 
transformations. For example, the values of a variable y may not be linearly 
related to the values of variable x, but they may turn out to be linearly related 
to, say, the logarithm of x, or maybe the square root of x, or perhaps the 
reciprocal of x, or any of a number of other possible transformations. 

3. The Regression Line 

Given a scatter diagram as shown in Figure 2, how do we go about 
choosing the "best" of all the possible lines that could pass through the cluster 
of data points? In other words, compared to the line that is shown, why could 
we not choose one that was a little steeper or perhaps one not so steep. Or 
what about one that was positioned a little higher in the cluster of points, or a 
little lower? There are an infinite number of possible lines, y = a + bx, differing 
in slope band/or y-intercept a, that could be drawn through the points in 
Figure 2. 

We could say that the line shown passes right through the middle of the 
cluster of points. But what is the middle? Do we have an objective criterion for 
determining the middle? Perhaps we should choose the line that passes through 
the point (x, ji) that represents the means of the two variables. This is a good 
start, but there are still an infinite number of lines that can pass through that 
point, each differing in slope. What would be the best inclination or slope of 
the line? The fact is, that on the basis of inspection alone, no two individuals 
are likely to agree on exactly the same line. For this reason we need a 
well-defined procedure for choosing a "best fitting" regression line 

I y'=a+bx I (1) 

where y' (read "y prime") represents the predicted value of the criterion 
variable for a given value of the predictor variable x, and a and b are the 
y-intercept and slope, respectively, of the line and must be determined from the 
data. The prime sign (') is used to distinguish a predicted value y' from an 
observed value y. 

Least squares criterion. While there are a number of plausible criteria for 
choosing a best-fitting line, one of the most useful is the least squares criterion. 
In Figure 2 the data points deviate from the given line by varying amounts, the 
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Variable x 

Figure 2 Deviations of data points from a linear function. 

extent of deviation indicated by the dashed lines. With the least squares 
criterion we choose that particular line, among all possible, that results in the 
smallest sum of squared deviations of the data points from the line. Since the 
general form of the regression line is y' = a + bx, our task is to identify 
the values of a and b which will minimize L(Yi - y()2, where Yi is an observed 
value and y; is the predicted value. 

Slope and y-intercept. It would seem to be a very laborious procedure if 
we were to determine such a best-fitting line by trial and error alone-posi­
tioning and repositioning the line, each time tabulating the squared deviations 
of the sample data points from the line, until we discovered that line which 
resulted in the smallest sum of the squared deviations. But as we have seen so 
often before, the problem of identifying this best-fitting line has a purely 
mathematical solution. The slope b of the best-fitting line, based on the least 
squares criterion, can be shown to be 

(2) 

where the summation is over all n pairs of (Xi' Yi) values. 
The value of a, the y-intercept, can in turn be shown to be a function of b, 

x, and y; i.e., ". 

(3) 

The derivations of (2) and (3) require calculus techniques and can be found in 
any advanced mathematical statistics text. 
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Table 1 Sample calculations for obtaining the slope b and intercept a of the 
best-fitting regression line using the definitional formulas. 

Xi Yi 
Shelf Spice 
space sales x i - x Yi - ji (Xi - X)(Yi - ji) (Xi - X)2 

340 71 40 1 40 1600 
230 65 -70 -5 350 4900 
405 83 105 l3 1365 11025 
325 74 25 4 100 625 
280 67 -20 -3 60 400 
195 56 -105 -14 1470 11025 
265 57 -35 -13 455 1225 
300 78 0 8 0 0 
350 84 50 14 700 2500 
310 65 10 -5 -50 100 -- - -- -- --Sums: 3000 700 0 0 4490 33400 

x = 300.0 ji = 70.0 

b= ~(Xi-X){Yi- ji) = 4490 = 1344 
~(Xi - X)2 33400· 

a = ji - b-X = 70.0 - (.l344)(3OO) = 29.68 

y'= a + bx 

y' = 29.68 + .l344x 

To get a better idea of the numerical calculations involved in det.ermining 
the values of b and a, we will reintroduce the spice sales vs. shelf. space 
example of the preceding chapter. Table I shows the paired values of spice 
sales and shelf space occupied by the spice line in ten randomly selected stores, 
as well as the calculations for determining a and b. First we obtain the 
deviation of each shelf space measure from the mean of that variable; x; - x. 
Then we obtain the deviation of each spice sales measure from the mean of 
that variable; Yi - y. Next we take the product of these pairs of deviations; 
(Xi - X)(Yi - y). Finally, we square the deviations of the Xi measures from 
their mean; (Xi - X)2. Now, summing the latter two sets of calculations, found 
in the last two columns of Table I, across all ten stores, we have 
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Using this value of the slope b, along with x and y, we can easily determine a, 
the y-intercept, as 

a = y - bx=70.0- (.1344)(300.0)=29.68 

These calculations, then, demonstrate the applications of the definitional 
formulas (2) and (3) for the slope and y-intercept, respectively. 

Substituting these values of a and b into the general form of the regression 
line, y' = a + bx, we have 

y'=29.68+ .1344x 

as the best-fitting line through the set of ten data points according to the least 
squares criterion. 

The line is shown graphically in Figure 3a, and it does appear to fit the 
data nicely. The reason the line does not intercept the y-axis at a =29.68, as 
expected, is due only to the fact that we have curtailed the x and y axes. 

If we now wanted to predict the sales of the spice line in a store in which it 
occupied, say, X =250 in2 of shelf space, we would simply plug that value into 
the regression equationy'=29.68+.1344x and get 

y'=29.68+ .1344(250)=63.28 dollars 

as our prediction of that store's spice sales. We must be cautioned, though, 
against applying the equation for values of X which are beyond those used to 
develop the equation, for the relationship may not be linear for those values 
of x. 

Alternative formulas for b. It is interesting to note that the slope b can 
also be expressed 

(4) 

where r is the correlation coefficient between the x and y variables, while s x 

and s yare their respective standard deviations. 
Yet another equivalent formula for the slope b is given by 

f~ , 

(5) 

where the summation is across the i = 1,2, ... , n pairs of observations. The 



168 REGRESSION ANALYSIS 

Table 2 Sample calculations for obtaining the slope b of the best-fitting 
regression line using an alternative computational formula. 

X, Yi 
Shelf Spice 
space sales x; XiYi 

340 71 115,600 24,140 
230 65 52,900 14,950 
405 83 164,025 33,615 
325 74 105,625 24,050 
280 67 78,400 18,760 
195 56 38,025 10,920 
265 57 70,225 15,105 
300 78 90,000 23,400 
350 84 122,500 29,400 
310 65 96,100 20,150 

-- -
Sums: 3,000 700 933,400 214,490 

i=300 y=70 

b= nLx,Yi-LXiLYi_= 10(214,490)-(3,000)(700) = 1344 

nLx; - (LX;)2 10(933,400) - (3,000)2 . 

a = y- bx=70.0-(.1344)(300)=29.68 

y'=a+ bx 

y'=29.68+.1344x 

application of this formula to the spice sales example is shown in Table 2, and 
again we find that b = .1344, although by a different route. Computationally, 
this is sometimes an easier method for calculating b. 

Standardized regression equation. It is also interesting to note that the 
raw score regression equation y' = a + bx simplifies to the standardized form 

I Z' =rz I y x (6) 

when the x and y variables are expressed as standardized z scores; i.e., with 
means of zero and standard deviations of one. The value of r is again the 
correlation coefficient between x and y, and corresponds to the slope of the 
line relating their standardized scores. There is no intercept term since 
the equation passes through the origin (0,0) corresponding to the means of the 
respective z variables. 

The standard score form of the regression equation for the spice sales 
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(a) Raw score regression line 

~, I 

200 
I ! ! 

250 300 350 400 
Shelf space I sq. in.) 

(h) Standardized score regression line 
z, 

2.0 

-2.0 

-2.0 

Figure 3 The best-fitting regression lines for the spice sales example. 

example is portrayed in Figure 3b. The data points and the slope r = .833 were 
taken from Table 5 . of Chapter 3. The difference in appearance of the slope 
and dispersion of data points in parts a and b of Figure 3 is due to the 
difference in scales for the two graphs; i.e., raw vs. standardized scores. 

4. The Regression Model 

In the preceding example we mechanically applied the formulas for the 
slope band y-intercept a to obtain an equation for the best-fitting line through 
the given set of data points. However, for the resulting regression equation to 
be properly interpreted, a number of assumptions must be met concerning the 
populations of data we are studying. n-

The essence of the linear regression model is shown graphically in Figure 
4. Specifically, the assumptions of the model are as follows: 

1. For each value of the predictor variable x, there is a probability distribution 
of independent values of the criterion variable y. From each of these y 
distributions, one or more values is sampled at random. 
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/(X,y) 

1-', = a+ {3x 

~------~~----~X'2~----X~J-------------------X 

Figure 4 The regression model of independent y populations with equal variances, and 
with means falling on a straight line. 

2. The variances of the Y distributions are all equal to one another, a condition 
referred to as homoscedasticity. 

3. The means of the Y distributions fall on the regression line ,.,. y = a + fJx; 
where,.,. y is the mean of a y distribution for a given value of the predictor 
variable x, f3 (beta) is the slope of the line, and a (alpha) is the y-axis 
intercept of the line. 

What we see, then, is that for any given value of the predictor variable x, the 
values of the criterion variable y vary randomly about the regression line. 
Consequently, any individual observation of the criterion variable, Yi' will 
deviate from the population regression line by a certain amount, call it ei , 

where the value of e j can be either positive or negative, depending upon 
whether the observation falls above or below the true regression line. Since 
these e;'s represent deviations from the mean of a Y distribution, their average 
value will be zero. 

Based on the above assumptions, we can characterize an individual ob­
servation of the criterion variable, Yj, as being equal to 

Yj = a + f3x + e j 

That is, the observed value, Yi' is the sum of a fixed part dictated by the true 
regression line, a + f3x, plus a random part, e j , due to the natural variation of 
the Y values about the regression line. It follows, then, that for any given value 
of the predictor variable x, the variation of the Yj values is identical to the 
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variation of the ej's, and it is assumed that this variation is the same regardless 
of the value of x. 

The importance of the ej's lies in the fact that they represent the primary 
source of error in trying to predict values of the criterion variable y. In the 
following section we will learn how to estimate the variance of these deviations 
from the true regression line. 

5. Accuracy of Prediction 

If the assumptions of the above regression model are met, we can be 
assured that the least squares method will yield a sample regression line, 
y' = a + bx, which is an unbiased estimate of the true, but unknown, popula­
tion regression line,,.,.y = a + f3x. However, the a and b estimates of a and f3 are 
subject to sampling error just like any other sample statistics, so they will be 
sources of error in trying to predict the criterion variable value from a given 
value of the predictor variable. But, by far the one greatest source of error in 
attempting to predict individual values of the criterion variable Y does not lie 
in the errors of estimating the slope and y-axis intercept of the regression line, 
but in the random variation of the y;'s about the regression line-the ei's of 
the preceding section. 

Standard error of estimate. The variation of the Yi values about the 
population regression line can be estimated by assessing their variation about 
the sample regression line. The standard deviation of the observed Yi values 
about the predicted values Y; is referred to as the standard error of estimate, 
designated sY'x' and is given by the formula 

(7) 

where the summation is across the i = 1,2, ... ,n sample observations. The 
reason we divide by n - 2, instead of n - I as was customary with other sample 
standard deviations, is due to the fact that there are two constraints on the 
data-the slope and y-axis intercept which were used to obtain the predicted 
values y;. 

Although s y x is referred to as the standard error of estimate, it is not a 
standard error' in our conventional use of the term as a measure of the 
standard deviation of the sampling distribution of a statistic. Rather, it is an 
estimate (when squared) of the variance of the Y populations about the true 
regression line, as shown in Figure 4. It might, more appropriately, be called 
the "standard deviation about regression." In this terminology the subscript 
notation of sV'x is also more meaningful, signifying the standard deviation of y 



172 REGRESSION ANALYSIS 

Table 3 Calculations for obtaining the standard error of estimate. 

Xi Yi 
Shelf Spice 
space sales Y/ = 29.68+ .1344xi Yi - Y/ (Yi - y/)2 

340 71 75.38 -4.38 19.184 
230 65 60.59 4.41 19.448 
405 83 84.11 -1.11 1.232 
325 74 73.36 .64 .410 
280 67 67.31 -.31 .096 
195 56 55.89 .11 .012 
265 57 65.30 -8.30 68.890 
300 78 70.00 8.00 64.000 
350 84 76.72 7.28 52.998 
310 65 71.34 -6.34 40.196 

-- -- -- ---
x=300 y=70 .;;'=70 0.00 266.466 

Sx = 60.92 Sy = 9.83 Sy' = 8.19 

~(Yi - y,)2 
= J 2668466 = 5,77 

Sy·x = n-'Z 

for a given x. 
Table 3 shows the calculations involved in determining the value of svx for 

our spice sales vs. shelf space example. First we substitute each value ofx into 
the sample regression equation y' = 29.68 + .1344x to arrive at the y' estimates. 
The differences between the observed and predicted values, Yi - Y;, are then 
squared and summed across the n = 10 stores, and finally divided by n - 2 
before taking the square root; specifically, 

= / 266.456 =577 
Sy.x 8 . 

This, then, is our estimate of the variation of the y populations about the true 
regression line. 

Confidence bands. At first glance we might think that Sy.x could be used 
to create a confidence band about the sample regression line, reflecting the 
maximum expected error in predicting y from x, with a given probability, say 
.95 or .99, similar to other confidence intervals based on sample statistics. But 
this is not so, since the errors in predicting yare not only due to s v' x' which 
estimates the random variation of y about the true regression line, but there are 
also two other sources of error: (1) the error in estimating the overall elevation 
or y-axis intercept of the true regression line, a, and (2) the error in estimating 
the slope f3 of the true regression line. 
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Furthermore, the error due the second of the above two factors-the error 
in estimating the slope-becomes more pronounced the more the predictor 
value Xi deviates from the average X value under study. The consequence of 
this ever-increasing error the further we move from tht; average value of the 
predictor value, is a bowed confidence band about the sample regression line. 
This can be seen most easily from a study of Figure 5. In part a of the figure, a 
sample regression line is superimposed upon the true but unknown regression 
line. Imagine, instead, that an infinite number of such sample regression lines 
were in the figure. Each would vary in slope due to sampling error, but the net 
effect would be the same: The further we move from the mean of the x 
variable, the larger the discrepancy between the sample and true regression 
line. 

Figure 5b shows the resulting confidence band with its bowed feature. Its 
width, measured vertically at any given value of the predictor variable x, is a 
function of the three sources of error outlined above: the natural variation of y 
about the true regression line, Sy.x; the error in estimating the y-axis intercept, 
a; and the error in estimating the slope f3 of the line. We have studied the first 
component, S y' x' in some detail, but to adequately probe the formulas and 
interpretations of the other two error sources would require extensive discus­
sion, and is best left for advanced study. However, for reference purposes, the 
relevant expression appears in Figure 5b. 

y 

y 

(a) A typical sample regression line vs. the population line 

A sample regression line 

Population regression line 

L-__________________ x 

[bl The bowed confidence band for future observations of y 

where y,lx is a fut\'!re observation of y for a 
given value of x 

L------~x~--~x~,---------------x 

Figure 5 Errors of prediction resulting from a sample regression equation (See text). 
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Although sv. x alone is not sufficient to precisely estimate the expected 
magnitudes of our prediction errors, it is fortunate that as n becomes large, say 
greater than 100, it can provide approximate confidence intervals, since the 
errors in the estimation of a and P become small relative to sv.x· This will be 
apparent from a study of the formula in Figure 5b: As n becomes large, the 
latter two terms become negligible. Under these large sample conditions, we 
can then expect that approximately 95% of our prediction errors are within 
± 1.96svx of the sample regression line, and that approximately 99% are within 
± 2.58s v. x of it, provided, of course, we make the further assumption that the y 
populations for each predictor value x are normally distributed in addition to 
having equal variance. 

Reduction of prediction errors. An understanding of how well the regres­
sion equation predicts the criterion variable y -compared to simply predicting 
its overall mean value ji, regardless of the value of x -can be had by studying 
the graph of the equation among the data points of a correlational scatter 
diagram. 

Parts a through d of Figure 6 show progressively higher degrees of 
correlation between two hypothetical variables. Beginning with a zero correla­
tion, we see that the variation in prediction errors (indicated by the bold 
arrows) is exactly equal to the variation of the criterion variable itself (indi­
cated by the double arrow). 

This state of affairs can be contrasted with the situation portrayed in parts 
b, c, and d of Figure 6, where we see that with increasing degrees of correlation 
the deviations of the observed scores from the regression line get smaller and 
smaller. That is, the errors of prediction are reduced as the degree of correla­
tion between the variables increases. The limiting situation, of course, would be 
the case of a perfect correlation in which all the observed points would lie right 
on the regression line and consequently there would be no errors of prediction. 

If it is recognized that the bold arrows in Figure 6 reflect the variance of 
the y values about the regression line, s;.x, and that the double arrows reflect 
the overali variance of the y values, s;, then the preceding relationship can be 
summarized concisely as 

where = is the symbol for "is approximately equal to" and r 2 is the square of 
the correlation coefficient between variables x andy. The relationship would 
be exact were it not for the fact that n -1 is used in the definition of Sy, 

whereas n -2 is used in the definition of Sy.x· 

The spice sales vs. shelf space example will illustrate the above relation-
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Figure 6 The reduction of prediction errors with increasing correlation. 
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ship. Recalling that r = .833, and obtaining the needed variance estimates from 
Table 3, we have 

or 

(5.77)2 =1-(.833)2 
(9.83f 

.345= .306 

In situations where n is large the approximation will be much closer. In this 
exam~le the various statistics were based on a sample of only n = 10. Notice 
that If we multiply the left side of the equation by (n -2)/(n -I)-i.e., 
8/9-we have an exact relationship (8/9)(.345)= .306. Thus, we conclude that 
the. knowledge of the regression equation between x and y has reduced the 
vanance of our errors of prediction to just over 30% of what it would be if we 
simply predicted the average value of y all the time, regardless of the value of 
x, or if we did not know the value of x. This is also one Context in which 
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meaning is given to the interpretation of ,2 as a measure of the proportion of 
variance in one variable accounted for by variation in the other. 

Proportion of variance explained. Another interpretation of the efficacy 
of a regression equation, and its relation to ,2 as a measure of the amount of 
variance in one variable accounted for by the variance in another variable, can 
be seen graphically in Figure 7. For clarity of illustration only a few data 
points are shown, rather than the swarm of data used in Figure 6. 

For each observed data point in the figure there is a corresponding 
predicted point. The observed data points are shown as open circles, while the 
predicted points as solid circles. Notice that if we project the observed data 
points and the corresponding predicted points against the y axis, we can 
compare their respective variations. In part a of Figure 7, portraying a high 
degree of correlation, the variation of the predicted y values is almost the same 
as the variation of the observed y values. In other words, nearly all the 
variation in the y variable is accounted for, or predictable by, the variation in 
the x variable which gave rise to the predicted scores through the regression 
equation. We see further in parts b, c, and d of the figure that the variance of 
the predicted scores compared to the variance of the observed scores gets 
smaller and smaller as the degree of correlation decreases, until we reach the 
limiting case of zero correlation, in which case none of the variance in the y 
variable is predictable from the variance in the x variable, because there is 
absolutely no variation in the predicted y values; for when there is a zero 
correlation between two variables, the best we can do in terms of prediction is 
to predict the mean value of the criterion variable regardless of the value of the 
predictor variable. This is the situation of a horizontal regression line, one with 
a slope of zero. 

The relationship described above can be described in mathematical terms. 
If we calculated the variance of the observed and predicted y values, the ratio 
of the latter to the former would be nothing other than the value of ,2. That is, 

where the numerator of the ratio is the variance of the predicted y values, while 
the denominator is the variance of observed y values. 

Again, we can illustrate the above relationship using the spice sales vs. 
shelf space data from Table 3. Substituting the appropriate values, we can 
confirm that 

y 

y 

(a) High correlation 

/' Observed y values 

~./-_.:redicted y values 

9 

L-------------_______ x 

(C) Low correlation 

~-----------------x 

y 

y 
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(bl Moderate correlation 

.--------.----~ 

.------------------~ 

9 

-.. ---.~ 
L---------------_____ x 

(d) Zero correlation 

L-----------_________ x 

~!U:~l:' Variation in the criterion variable accounted for by variation in the predictor 

does in fact satisfy the equality. 

Vari!l: :~~ot~~~~dt~~~ ~2 rep~esent~ the propo~tion of variance in the criterion 
the predicted y' values y ~a~~nce m th~ predIcto~ variable which gives rise to 
r2 = '" VIa e regressIOn equatIOn. In the above exam Ie 
varia~~~~ s:~~~y;~g that 69% ~f the variation in spice sales is accounted for ~y 

e space occupIed by the product. 

tion~: i~~~~d be noted that if the ~ata were experimental rather than correla­
coefficI'ent" u~e, then th~ value of, is no longer the square of the "correlation 

-I.e., an estImate of the I r 2 

its mathematical definition. In such f~~::u~:~nr~ "i~~~t onl~ res~mbles it in 

~:~1f:e~i~~\:! dete~~ination.' and its value will be influen~~dr~:r;:e ~~r~~u~~; 
e pre Ictor vanable chosen by us for stud Rem b h . 

~:~a~~eco~~~:t!~nt~ed;~a, w; have ~o influence over t~~ value::f ~~~ p:~~~c~; 
exampl; of the latter s~;u~ti~~~o~~t~~ di~t~;;~!;~::f~t~ v:!~eSr~!;~~~ 
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varied the amount of shelf space occupied by the spices in a random sample of 
ten stores, rather than simply observing how the two variables covaried in a 
natural setting. 

Figures 6 and 7 should be studied to see the complementary relationship 
between these two interpretations of r 2 vis-a-vis the regression line and the 
predicted scores. In one case, as the correlation increases, the errors of 
prediction decrease. Alternatively, as the correlation increases, we are able to 
account for more of the variation in the criterion variable with values predicted 
from the regression equation. It should be clear, then, that the task of 
regression analysis does not end with the development of the regression 
equation, but further involves an assessment of the accuracy with which the 
relationship is described. 

6. Significance Test of the Slope 

Although its discussion has been reserved until now, one of the first things 
we want to do upon obtaining the sample regression equation is to test its 
slope b. 

If there is no relationship between the variables x and y, then the slope of 
the regression equation would be expected to be zero. To test the hypothesis 
Ho: /3 =0, we need to know the standard error of the sample slope b, which is 
the estimate of /3, and it is given by 

s = Sy.x (8) 
b V"J.(X

i
-X)2 

where sY'x' the standard error of estimate, is given by formula (7). 
Choosing a significance level IX beforehand, we can then test the null 

hypothesis with the t variable 

b-/3 
t=--

Sb 

which is distributed with degrees of freedom df = n - 2. 
For the spice sales vs. shelf space example the standard error of the slope b 

is given by 

5.77 = .032 
/33,400 

where the denominator and numerator values were obtained from Tables I and 
3, respectively. 

ANALYSIS OF RESIDUAL ERRORS 179 

The significance test of the sample slope b = .1344 is then 

t = b - /3 = .1344-0 =420 
sb .032 . 

which with degrees of freedom df = 8 is well beyond the critical value of 
t = 1.86 needed to reject the null hypothesis at the IX = .05 significance level 
using a one-tailed test. Consequently, we can be confident that the observed 
linear equation was not simply a chance departure from a horizontal line, the 
situation when there is no relationship between the two variables. To use the t 
test, however, we must make the more stringent assumption that the y 
populations not only have equal variances, but are also normal in form. 

7. Analysis of Residual Errors 

If violations of the above assumptions of the regression model are not 
evident from a knowledge of the data source or from an inspection of the plot 
of the y values against the x values, then a graph of the prediction or residual 
errors, y - y', will help to point out possible deviations from the assumptions. 

Figure 8 presents four examples of such residual plots. In part a of the 
figure the residual errors are evenly distributed and not related to the value of 
x, suggesting that the relationship between y and x is indeed linear, as 
required, and that the variance of y for each value of x is the same, as required 
by the homoscedasticity assumption. 

In part b of Figure 8 the residual errors increase in variance as x increases 
suggesting that the homoscedasticity assumption has been violated by the data: 

Figure 8c shows a curvilinear pattern for the residual errors, reflecting a 
curvilinear relationship between the x and y variables themselves, invalidating 
the linear regression model. 

Part d of Figure 8 shows the residual prediction errors increasing as x 
increases and also becoming more dispersed. Such a pattern indicates a 
violation of either the linearity or homoscedasticity assumptions, or quite 
possibly both. 

This type of residual analysis, along with an inspection of the graph of the 
original data, will prevent to a large extent the misapplication of the linear 
regression model and help us to avoid incorrect conclusions based on a purely 
mechanical application of the technique to a bpdy of data. 

As for the assumption of independenty distnbutions for the various values 
of x, it is best verified from a logical analysis of the data Source. If the same or 
related objects contribute to more than one data point-either within or 
between the y distributions-then the observations, and consequently the 
prediction errors, are not likely to be statistically independent. . 
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(a) Linear model plausible 
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(cl Curvilinear relationship between 
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Figure 8 Examples of residual prediction error plots and likely interpretations. 

8. Multiple Regression 

Multiple regression is an extension of the concept of simple regression. 
Rather than using values on one predictor variable to estimate values on a 
criterion variable, we use values on several predictor variables. In using many 
predictor variables instead of just one, our aim is to reduce even further our 
errors of prediction; or, equivalently, to account for more of the variance of 
the criterion variable. 

The input data for a multiple regression analysis is similar to that for a 
multiple correlation analysis; namely, a random sample of objects measured on 
some criterion variable of interest, as well as on k predictor variables. While 
the multiple correlation analysis requires that the predictor variables are 
random variables-as opposed to being determined by the researcher-there 
are multiple regression models to cover both types of situations. 

An example of the type of problem to which multiple regression analysis 
lends itself would be the prediction of college grade point average based on 
predictor variables such as high school grade point average, aptitude test 
scores, household income, scores on various entrance exams, etc. A number of 
other examples of the application of multiple regression analysis will be 
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introduced at the end of the chapter, after the basics of the technique have 
been studied. 

Multiple regression equation. The multiple regression equation will be 
recognized as similar to the simple regression equation, but instead of a single 
predictor variable x we have several predictor variables x I' X 2' ... , X k. The 
general form of the equation is 

(9) 

where y' is the predicted value of the criterion variable and the values of a and 
the b coefficients must be determined from the sample data. Since it is based 
on sample observations, equation (9) must be thOUght of as an estimate of the 
true but unknown population equation 

(10) 

Equations (9) and (10) do not represent straight lines as in the case of simple 
regression where we have only one predictor variable, but rather represent 
planes in multi-dimensional space, a concept admittedly difficult to conceive 
and virtually impossible to portray graphically. However, its application is easy 
enough. 

As in simple regression, the least squares solution is used to determine the 
best multiple regression equation; i.e., the values of a,b l ,b2, ••• ,bk that will 
yield values of y' such that the sum of the squared deviations of the predicted 
y' values from the actual observed y values-~(y - y'l-is at a minimum. 
Alternatively, we can think of the least squares solution as that weighted sum of 
values on the various predictor variables that correlates most highly with the 
values on the criterion variable. For example, if the least squares criterion 
yielded the following equation for a three-predictor variable problem 

y'=24.3+ 7 .Ixi +6.2x2 +91.5x3 

we would know that no other equation would yield predictions y' which would 
correlate more highly with the observed values of y; or, equivalently, no other 
equation would result in a smaller value of ~(y - y,)2, the sum of the squared 
differences between the actual and predicted values of y. 

Regression coefficients. The values of b1, bz, ... ,bk in the regression 
equation y' = a + b1x1 + bZx 2 + ... + bkxk are alternatively referred to as b 
coefficients or as regression coefficienJs. In the following section, we will get a 
better idea of the interpretation, and limits on the interpretation, of the b 
coefficients; where they will be contrasted with beta coefficients based on the 
regression equation in standardized z score form. 



182 REGRESSION ANALYSIS 

9. Importance of the Predictor Variables 
The multiple correlation coefficient R tells us the correlation between the 

weighted sum of the predictor variables and the criterion variable. Conse­
quently, the squared multiple correlation coefficient R2 tells us what propor­
tion of the variance of the criterion variable is accounted for by all the predictor 
variables combined. 

Still, it would also be worthwhile to know how much each of the individual 
predictor variables contributes to the total explained variance, or, alternatively, 
to the total reduction in prediction errors. For example, a multiple R2 of .70 
signifies that 70% of the variance of the criterion variable is accounted for, or 
predictable by, a given set of predictor variables. If, say, there were five 
predictor variables in this particular situation, would we be able to determine 
how much of that 70% could be attributed to each of the five predictor 
variables? 

The fact is, there is no satisfactory method for determining the absolute 
contributions of individual predictor variables to their combined effect in 
accounting for the variance of a criterion variable, when we are dealing with 
correlational rather than experimental data. The problem lies in the fact that 
the predictor variables are usually correlated among themselves. We could 
sooner unscramble an omelette. 

If the predictor variables were uncorrelated with each other, the problem 
would be simple. We would merely take the square of the correlation coeffi­
cient of a predictor variable with the criterion variable, r2, as the measure of 
that predictor variable's contribution to the multiple R2. In this situation of 
independent predictor variables, the r2 of the individual predictor variables 
with the criterion variable will sum to R2, and then it would be simple 
arithmetic to determine their percentage contribution to the sum. 

When the predictor variables are correlated among themselves, however, 
the sum of the individual r2 will be greater than R2, since most of the predictor 
variables are duplicating the predictive power contained in another predic­
tor variable. In other words, much of the explained variance of the criterion 
variable would be counted more than once. 

What about the possibility of eliminating a particular predictor variable 
from our regression analysis and observe the extent to which R2 drops in value. 
While this procedure seems appealing on the surface, it will not accomplish our 
purpose. If we added the decrements in the value of R2 resulting from the 
withdrawal of each predictor variable, the sum would again exceed R2. And for 
the same reason as before. Each time we remove a predictor variable we are 
removing some predictive ability that is in common with other predictor 
variables, and consequently we end up tabulating it more than once. This 
procedure, furthermore, can result in the gross misinterpretation of the predic­
tive capacity of a variable. Imagine, for example, that the removal of a 
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particular predictor variable results in a negligible decrease in the value of R2. 
Are we to conclude that this variable is unrelated to the criterion variable? Not 
necessarily. It may be highly correlated with another predictor variable, and in 
that sense was superfluous for the analysis, but in the absence of that other 
variable may' well have resulted in a substantial drop in the value of R2. 

Beta coefficients. About the best we can do in assessing the relative 
importance of the various predictor variables is to look at their coefficients in 
the multiple regression equation when all variables are in their standardized z 
score form; i.e., each with a mean of zero and a standard deviation of one. The 
coefficients of the standardized predictor variables are referred to as beta 
coefficients or beta weights, and the general form of such a prediction equation 
can be written 

(11) 

where z~ is the predicted standardized score on the criterion variable. The 
beta's are spelled out in (11) so as not to confuse them with the f3's in equation 
(10) where they refer to the theoretical parameters of the population equation 
in raw score form. The beta's in equation (11) on the other hand, are actually 
empirical "beta estimates" of the corresponding coefficients of the population 
equation in standardized z score form. Nonetheless, through common usage 
they have come to be called simply beta coefficients or beta weights, and are 
the same as those discussed in conjunction with multiple correlation in the 
preceding chapter. 

The beta coefficients are also sometimes referred to as partial regression 
coefficients. The term "partial" derives from the fact that these regression 
coefficients are related to the partial correlation coefficients (see Chapter 3) 
between the respective predictor variables and the criterion variable. That is, 
the value of the coefficient of each predictor variable x is a function of the 
correlation between that predictor variable and the criterion variable as well as 
the correlations that exist among the predictor variables themselves. As we have 
seen in our study of the partial correlation coefficient, it expresses the 
correlation between two variables under the condition that all other concom­
mitantly measured vari~bles are held constant; that is, it statistically extracts 
the effects of other variables which correlate with the two variables with which 
we are concerned-the criterion variable and agiven predictor variable. 

Since each variable in the standardized foim of the multiple regression 
equation (11) has exactly the same standard deviation and mean, the absolute 
values of the beta coefficients will tell us the rank order of importance of the 
predictor variables. For example, in the equation 
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All regressions. An alternative method of identifying a concise regression 
equation is to consider every possible regression equation that could be 
constructed from our set of predictor variables. For this all-regressions ap­
proach it can be shown that if we have k predictor variables there are 2k 
possible regression equations. For example, assume we had five predictor 
variables: The first one could or could not appear in the equation, the second 
one could or could not appear in the equation, etc. The two possibilities for each 
of the five variables results in 2 X 2 X 2 X 2 X 2 or 25 = 32 possibilities. 

Modem computers are so fast that every one of the possible regression 
equations can be computed within seconds, provided the number of variables 
is not too large. Rather than looking at every single equation though, which 
would number over 1,000 with as few as ten variables, we could ask the 
computer center statistician to provide us with the "best" equation when using 
one variable, when using two variables, when using three variables, and so on. 
By "best" we mean the ones associated with the largest R2 's. 

The stepwise and all-regressions procedures allow us to identify a regres­
sion equation based on relatively few predictor variables, yet which accounts 
for virtually all the variance tha! could be explained if we used the entire set of 
predictor variables. This is desirable from the standpoint of parsimony of 
explanation and economy of data collection. 

On the other hand, there is the danger that we might select variables for 
inclusion in the regression equation based purely on chance relationships. 
Therefore, as stressed in our discussion of multiple correlation, we should 
apply our chosen regression equation to a fresh sample of objects to see how 
well it does in fact predict values on the criterion variable. This validation 
procedure is absolutely essential if we are to have any faith at all in future 
applications of the regression equation. 

11. Applications of Regression Analysis 
As stressed throughout the chapter, two key benefits to be derived from 

the application of regression analysis include (1) the prediction of values on a 
criterion variable based on a knowledge of values on predictor variables, and 
(2) the assessment of the relative degree to which each predictor variable 
accounts for variance in the criterion variable. 

In terms of specific applications of the technique, the possibilities are near 
limitless. In business and economics there is interest in identifying predictors 
of sales, productivity, unemployment rates, inflation rates, strike activity, etc. 
Researchers in education and psychology are interested in predictors of 
academic achlevement, career success, aptitudes, personality traits, mental 
health, etc. Sociologists, psychologists, and anthropologists are interested in 
predictors of crime, marriage, divorce, and birth rates. Predictors of crop yield, 
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animal behaviors, disease durations, and bodily functions such as blood 
pressure or skin temperature are of interest to researchers in biology and 
medicine. These are just a few of the criterion variables which might be studied 
in various fields, and many more could be identified, each with a long list of 
potential predictor variables. 

What is important to realize is that alternative regression analyses can be 
applied to the same basic analytical problem, depending upon the objects we 
choose to study. Consider, for example, in the world of business, which 
perhaps has the widest range of objects for study, an automobile manufacturer 
interested in the criterion variable "sales of Model A." Now this is a very 
broadly stated problem and needs sharper definition. To be more specific, the 
manufacturer is interested in knowing which variables are related to the sales 
of Model A, information which can then be used to possibly increase its sales. 
While we recognize that on the surface this problem lends itself to a regression 
analysis, we must formulate the problem more specifically in order to apply the 
analytical technique. It is at this point that the ingenuity of the investigators 
comes into play. 

A number of options are available to the planners of the study. The 
criterion variable has been identified as the sales of Model A, so the next task 
is to identify a set of objects on which to measure this variable. We might 
consider the individual dealerships, since they surely vary with respect to the 
criterion variable. Next, we need to identify a set of potential predictor 
variables, characteristics of the dealerships that might be related to our 
criterion variable of Model A sales. 

A management, sales, and research team will brainstorm to come up with a 
comprehensive set of potential predictor variables: e.g., population density in a 
fifteen-mile radius, distance to nearest dealer of competitor B, local advertising 
expenditure, number of feet of street frontage, average gasoline price in a 
fifty-mile radius, number of sales personnel, number of service personnel, 
number of years at existing site, average trade-in allowance, number of autos 
on hand, etc. 

As can be easily seen, the list could go on and on. Notice, also, that the 
nature of the objects chosen for the analysis, dealerships, more or less dictates 
the nature of the predictor variables. Note further that some of the predictor 
variables are under the manufacturer's control (e.g., number of sales personnel, 
trade-in allowance, number of autos on hand, etc.) while others are not (e.g., 
average gasoline price, years at existing sit~. population density, etc.). How­
ever, even in those instances in which the manufacturer has no direct control 
over the predictor variable, the regression analysis could still be beneficial in 
selecting future dealership sites. In the case of the predictor variables which are 
under the manufacturer's control, they can later be manipulated on a test basis 
to determine if they do indeed cause changes in sales. 
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The auto marketer can attack the very same problem from a completely 
different angle. With sales of Model A still the criterion variable, we may 
choose as objects not individual dealerships, but individual sales persons. The 
predictor variables could then include dimensions such as years of experience, 
age, scores on a personnel test, grade in a training course, height to weight 
ratio, etc. The regression analysis will then tell us how these characteristics are 
related to Model A sales for individual sales persons. 

Or, alternatively, the manufacturer could use marketing territories as 
objects, which would dictate predictor variables such as population, number of 
Model A dealers, number of dealers of competitor Model B, advertising 
expenditure, and many of the same variables that were applicable in the 
dealership analysis. 

Yet another possibility is to use time periods as the objects of our analysis. 
Sales during the various time periods would be related to such variables as 
number of used cars sold, advertising expenditure, rainfall, weeks since new 
model introduction, unemployment rate, sales of Model B, size of payroll, total 
hours open to public, etc. 

We can even use prospective'car buyers as objects. The criterion variable 
could be a numerical rating of interest in purchasing Model A, and the 
predictor variables could be ratings on a series of image characteristics such as 
"attractive styling," "roomy interior," comfortable ride," "good resale value," 
"economical to drive," etc. The extent to which the ratings on the various 
image dimensions predict ratings of purchase interest would shed further light 
on the factors that influence sales of Model A. 

What we have seen in the above examples is that a single criterion variable 
can be studied with a number of alternative regression analyses. By under­
standing the extent to which characteristics of dealerships, sales personnel, 
sales territories, time periods, and consumers are related to Model A sales, the 
marketing efforts of the automobile manufacturer can be adapted to improve 
the sales of Model A, the criterion variable. 

This type of analysis-identifying a criterion variable of interest, selecting 
an appropriate set of objects on which to measure it, and identifying a set of 
potential predictor variables-is applicable to the widest possible range of 
analytical problems, whether the criterion variable is sales, crop yields, atti­
tudes, academic achievement, job success, strike activity, disease levels, crime 
rates, or life span. It should also be clear from the preceding examples that 
regression analysis is more than the mechanical application of a statistical 
technique to a matrix of data. The formulation of the problem, the identifica­
tion of criterion and predictor variables and the objects upon which they are 
measured, and the interpretations of the resulting regression equation and the 
accompanying R2 and beta weights, will determine how useful the analysis will 
be. And, of course, we must be satisfied that the raw data conforms to the 
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statistical assumptions of the given regression model. 
Also, we have seen that there is no one regression analysis that is most 

appropriate for understanding a criterion variable, but rather the greatest 
understanding is most likely to result from a number of alternative analyses, 
each viewing the problem from a different angle. 

To round out our discussion of regression analysis the balance of the 
chapter will touch briefly on several special topics related to the application 
and interpretation of the technique. 

12. Collinearity Problem 

A particularly vexing problem in the application of multiple regression 
analysis arises from the situation in which two or more predictor variables are 
very highly correlated with each other. This is referred to as the multicollinear­
ity problem, or simply as collinearity. Under such conditions the computer 
attempting to analyze the data according to its stated instructions is likely to 
go awry. Exactly when this will happen is not always identifiable, otherwise it 
could be prevented. We should be forewarned, though, to use some common 
sense in our selection of predictor variables so as not to include groups of 
variables that we know on logical grounds must be highly correlated with each 
other. For example, we would not include the variables of sales, costs, and 
profits into a regression analysis since any two will automatically determine the 
third. 

Related to the collinearity problem is the situation in which we include a 
predictor variable that is really not a predictor variable as such but rather a 
slight variation of the criterion variable. For example, if our criterion variable 
was defined as the sales performance of a set of sales reps, and among our 
predictor variables we included the commissions earned by the reps, it is 
unlikely that we would gain any information on the other predictor variables 
we studied, since commissions would account for virtually all the varjance in 
the criterion measure. If there is no variance left to account for, how can we 
assess the importance of the remaining predictor variables? Either we should 
have left sales commissions out of the problem or let it stand as a criterion 
variable. In situations such as this, we cannot expect the computer to think 
for us. 

13. Dummy Variables 

In order to use qualitative predictor variables (such as sex) in a regression 
analysis, we can transform the variables into quantitative dummy variables. 
Essentially what we do is convert each level of a qualitative variable into a 
binary variable. For example, the qualitative variable of sex (male vs. female) 
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could be made into a dummy variable representing maleness-i.e., male vs. not 
male-with the respective numerical values I and O. Or we could construct the 
dummy variable representing femaleness -i.e., female vs. not female-again 
with the respective numerical values I and O. The three levels of the qualitative 
political affiliation variable-Democrat, Republican, and Independent-could 
be made into three dummy variables: Democrat vs. not Democrat, Republican 
vs. not RepUblican, and Independent vs. not Independent. In each case, one 
level of the dummy variable could take on the value of I and the other level a 
value of O . 

. The benefit of such a transformation is that the quantitative dummy 
vanables can now be introduced as predictors into a regression analysis. For 
example we could detennine if the sales reps' sex was related to their sales 
perfonnance. Or we could detennine if the dominant political affiliation of a 
voter district was related to the district's crime rate. 

However, when we use dummy variables we must keep the collinearity 
problem in mind. We cannot introduce dummy variables for every level of the 
qualitative variable, since they are not independent of one another. If we know 
that an individual has a value oto on the dummy variable of "maleness" we 
can predict perfectly the individual's value on the dummy variable "female­
ness" -namely, it must be 1. Therefore we need to include only one of these 
two dummy variables. In the case of dominant political affiliation of a voter 
district, if we know that a district scores 0 on "Democratness", and I on 
"Republicanness" we know for sure that it must score 0 on "Independentness." 
So, we need to include only two of these three dummy variables. Knowing a 
district's value on any two of the three dummy variables will automatically 
infonn us of its value on the remaining dummy. 

In general, when we construct dummy variables from a qualitative vari­
able, we will always want to use one less than the number we can create. For 
example, if we have classified voters into ten occupation categories, we can 
create nine dummy variables for use in a regression analysis for predicting 
frequency of voting based on occupation. 

14. Autoregression 

An interesting application of regression analysis is to predict values on the 
criterion variable based on values of the same criterion variable obtained 
earlier in time. Imagine the price of Stock A on each of 100 trading days. Now 
let us pair each of these prices with the price on the immediately preceding 
day, as explained in our discussion of serial correlation. We can now try to 
predict the price of Stock A on a given day based on its price the previous day. 
In fact, we could turn it into a multiple regression equation by introducing as 
additional predictor variables the stock's price ~wo days back, three days back, 
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etc. 
While we should be so lucky as to be able to predict the future in the stock 

market, the autoregression technique is useful in identifying dependencies 
among data collected sequentially which we may wish to extract before 
submitting the data to further analysis. The technique is also useful for 
projecting time series data such as crime rates, fertility rates, strike activity, etc. 

15. Regression to the Mean 

The expression "regression" originated from the observation that excep­
tionally tall fathers tended to sire sons who, when matured, tended to be 
shorter than their father's height. Similarly, exceptionally short fathers had 
sons who tended to be taller than their fathers. While a full interpretation of 
such a finding would require theories of genetics and the dynamics of mate 
selection, we can attribute it partly to the phenomenon of regression to the 
mean. 

To understand the concept consider that any empirical measurement of a 
characteristic is composed of two parts- the true value of the characteristic 
plus or minus some error. On repeated measurements the true value remains 
the same but the error component fluctuates. We know that when we measure 
a large number of objects with respect to a characteristic, some of the objects 
will score high, some low, and some in between. Now wherever the object 
scores, part of the score is due to an error component. Thinking in terms of 
conditional probabilities, we can ask ourselves whether those objects that 
scored exceptionally high were not benefiting from a large error component; 
and, similarly, those that scored exceptionally low, were in the receipt of a 
large negative error component. Cast in a different light, suppose we knew 
only the size of an object's error component: What would we predict as the 
object's total score if we knew it had an exceptionally large positive error 
component-would it tend to be above or below the mean. The dynamics of 
this phenomenon become apparent when we remeasure our set of objects on 
the same characteristic and compare their respective values on the two mea­
surements. What we find is that those that scored exceptionally high (or low) 
on the first measurement score closer to the mean on the second measure; that 
is, there is a regression to the mean. The greater the error component, the 
greater will be the regression or "turning back" to the mean. 

This phenomenon is worth bearing in mip.d whenever exceptional scores 
on a single measurement are singled out for attention; especially when the 
objects possessing these scores are to receive special due, as in academic, 
medical, or business settings. For example, a year after introduction of a new 
product, two cities are singled out as having exceptionally high sales. During 
the next year these cities receive all manner of special attention and marketing 
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expenditure. After the second year it is found that their performance has 
dropped compared to their first year performance. The cities which had the 
best second-year performance gain were those with lackluster first-year perfor­
mance. In other words, much of the initial variation in sales from city to city 
was due purely to chance variation, and the cities that performed best during 
the first year just happened to be recipients of a larger positive error than the 
other cities. On the other hand, this need not be so: It could well be that the 
variation was not due to error at all, but to fundamental causal factors 
operative in each city. This is the variance that regression analysis tries to tap. 

Consider as another example a mutual money market fund that boasts 
having the best performance of all the leading investment funds during the 
most recent year. We should not be too impressed with this performance. After 
all, of the many funds, and of the many starting each year, one of them had to 
do better than all the others. This is a truism. Again, we want to know the 
reliability of this performance. Will it duplicate its performance next year, or 
will another fund claim the leadership role, while the other regresses to the 
mean. 

16. Self-Fulfilling Prophesy 

The true validity of the predictions ansmg from a regression analysis 
cannot always be ascertained. Since the analysis is not purely an intellectual 
exercise but the basis for action, the outcome of the analysis may often 
provoke activities that make the predictions come true-the phenomenon of 
self-fulfilling prophesy. If sales for certain stores in a chain are predicted to be 
above average, these stores may enjoy special promotions and other attention 
they might not normally receive, and consequently live up to expectations but 
for the wrong reasons. The same is likely to happen when students are placed 
into special classes based on achievement or aptitude test scores. 

On the other hand, we might experience a self~negating prophesy in which 
dire predictions are forestalled through corrective actions. For example, predic­
tions of falling sales, poor academic achievement, or disease onset may result 
in special remedial efforts to avoid such possibilities. In instances such as 
these, it becomes a very philosophical question as to whether our regression 
analysis has validity, for while our dire predictions did not come true, we 
surely benefited from the analysis. 

17. Concluding Comments 

In this chapter we have touched upon the basic concepts of regression 
analysis, a technique for describing the mathematical relationship between a 
criterion variable and one or more predictor variables. We also discovered how 
r2, beta COefficients, and the measures of prediction error help us to interpret 
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the practical value of a regression equation. While regression analysis can be 
applied to problems in which the predictor variables are either random 
variables or fixed experimental variables, we concentrated our examples on the 
former type since they are so commonplace. Experimental variables, as they 
are related to a criterion variable, will be discussed at greater length in the 
following chapter on Analysis of Variance, although it should be recognized 
that they can also be described by the regression approach. 




