Lifespan Psychology

Chapter 3 Biology of Development

Outline • Infertility/Reproductive technologies • Probabilities • Fertility problems and treatments • Legal and ethical issues

- Adoption
- Heredity/DNA/Genes

Infertility

- probabilities of fertilization birth
- affects many American couples
- 1 in 10 to about 1 in 6 (10-17%)
- women most commonly blockage or abnormality of fallopian tubes
- men low sperm count or low sperm motility

Medical technologies

- test tube baby (in vitro fertilization)
- common procedure now
- in use for over three decades
- US first in 1981, now 4 million world wide, 58,000 yearly in US
- no guarantee of success, overall about 29%/egg retrieval

Other medical options

- stimulate maturation/release of eggs
- stimulate "normal" ovulation
- drugs can develop/maintain the uterine lining
- fertility drugs = increased p(multiple births)
- artificial insemination
- surrogate mothers

Issues with reproductive technologies

- advantages and disadvantages?
- ethical issues?
- law
- ownership of embryos?
- rights/obligations of "other parent?"
- very expensive
- who pays?
- adoption trends

Functions of genes

- direct "housekeeping" chores
- metabolic functions
- few hundred carry codes for proteins only for that type of cell
- Twins
 - monozygotic
 - dizygotic
 - genetic relatedness of MZ and DZ twins?

Genetic Inheritance

- Gregor Mendel (1822-1884)
- discovery in the 1860's
- ignored until "rediscovered" around 1900
- Heredity transmitted in discrete units
 - not via "blending" mom and dad's traits
 - children resemble their parents
 - attributed to "blending of bloods"
 - origin of "bloodlines" & "in the blood"

Mendel's work

- pea plants
- traits that came in pairs of allelles
- simple pairs of traits.
- tall vs. short; purple vs. white flowers; wrinkled vs. smooth peas
- offspring always one or the other

Cross breeding

- a short and a tall plant, where:
- both parents the same as their parents
- 100% tall plants
- two of these tall offspring
- 75% tall and 25% short plants (roughly)

In the pea plant

• "tall" genes dominate "short"

- 1 tall and 1 short gene = no blending
- the plant grows tall
- short or second gene doesn't matter

Genetics continued

• Recessive genes

- can emerge to take control in subsequent generations
- dominant recessive status of human characteristics
- Genotype and Phenotype
- Genotype: Set of genes a person inherits
- Phenotype: Set of traits a person
- actually displays

21

Inheritance of Hemophilia, a Sex- Linked Disorder x Normal Father Y	Carrier Mother X X	
	XX Normal Daughter (25%)	XX Carrier Daughter (25%)
	XY Normal Son (25%)	XY Hemophilic Son (25%)

