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Advanced Experimental Design
Psych 464

Dr. Jeffrey Leitzel

Topic 1: Correlation / Linear Regression

Outline/Overview

Correlations (r, pr, sr)

Linear regression

Multiple regression
interpreting b coefficients

ANOVA model test

R2

Diagnostics
Distance(Discrepancy), Leverage, Influence, & 

Multicollinearity

The correlation coefficient (Pearson r)

Continuous IV & DV 
(Interval/Ratio level data)

Dichotomous variables

Strength of linear 
relationship between 
variables

 r2 coefficient of 
determination
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Partial and semipartial correlations

 Partial Correlation
 r between two variables when one or more other variables is 

partialled out of both X and Y

 example: experimenter interested in investigating the 
relationship between income and success in college
 measured both variables, ran correlation

 it was statistically significant

 he began repeating these results to all of his students

 do well in college = large salaries

 what might the bright student in the back of one of his 
classes have raised as an issue?

Partial correlation (cont.)

 IQ as a third variable effecting both college 
success and salary earned

 The partial correlation between college success 
and salary with IQ partialled out of both variables

IQ(x2)salary(y)

gpa(x1)

IQ(x2)salary(y)

gpa(x1)

Partial correlation (cont.)

 correlation between the residuals is the partial correlation 
between income and success, partialling out IQ

 generally represented by ry1.23…p

 subscripts to the left of the dot represent variables being correlated

 those to the right of the dot are those being partialled out

 ry1.2=correlation
between salary and
GPA with IQ partialled
out

 pr2=c/(c + d)

IQ(x2)
salary(y)

gpa(x1)

A

BC

D
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Semipartial correlation

 also called the part correlation, far more routinely used

 ry(1.2) represents the correlation between the criterion (y) and a partialled 
predictor variable

 the partial correlation has variable x2 partialled out of both y and x1

 for the semipartial, x2 is partialled only out of x1

 the correlation between y and the residuals from x1 predicted by x2

 correlation between y and the part of x1 that is independent of x2

 ry(1.2)=correlation between salary and
GPA with IQ partialled out

 sr2=c/(a + b + c + d)

IQ(x2)
salary(y)

gpa(x1)

A

BC

D

Semipartial correlation (cont.)

 can rearrange semipartial correlation formula:
R2

y.12 = r2
y2 + r2

y(1.2)

 R (Multiple correlation) based on information from 
variable 1 plus additional nonredundant
information from variable 2 through variable p so: 
R2

y.123…p = r2
y1 + r2

y(2.1) + r2
y(3.12) +…+ r2

y(p.123…p-1)

 If the predictors were completely independent of 
one another, there would be no shared variance to 
partial out

 would simply sum the r2 for each X variable with Y 
to get the Multiple R2

Simple linear regression

Finding the equation for the line of best fit

Least squares property
Minimizes errors of estimation

The line will have the form:  y‘ = a + bx
Where: y' = predicted value of y

a  =  intercept of the line

b  = slope of the line

x  = score of x we are using to predict y

 Multiple regression an extension of this
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Multiple regression models

Simple linear regression models generally 
represent an oversimplification of reality

Usually unreasonable to think in terms of a 
single cause for any variable of interest

Our equation for simple linear regression:
y’ = a + bx

becomes: y’ = a+b1x1+b2x2+…+bkxk

Multiple regression (cont.)

 y’=a+b1x1+b2x2+…+bkxk

 Where y = dependent variable (what we are predicting)

 x1, x2,…, xk = predictors (independent variables or 
regressors)

 b1, b2,…, bk = regression coefficients associated with the k 
predictors

 a = y intercept

 The predictors (x’s) may represent interaction terms, cross 
products, powers, logs or other functions that provide 
predictive power

Interpreting b coefficients

 If x1 is held constant, every unit change in 
x2 results in a b2 unit change in y’

The constant, a (y intercept) does not 
necessarily have a meaningful 
interpretation
any time 0 is outside the reasonable range for 

predictors the intercept will be essentially 
meaningless 
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Overall ANOVA

 Testing overall model adequacy

 Null hypothesis H0: b1=b2=…=bk=0
Alternative hypoth H1: any b <> 0

 F statistic (ANOVA) = MSregression/MSerror

MSregression = SSregression/ k
MSerror = SSerror / n-(k+1)

Where n = number of observations
k = number of parameters in

model (excluding a)

ANOVA (cont.)

SSregression = (y’ - My)2

SSerror = (y - y’)2

When the overall regression model provides 
no predictive power the two mean square 
quantities will be about equal

We are testing an F statistic with
(k, n-(k+1)) degrees of freedom

ANOVA in 
multiple
regression
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R2 and Adjusted R2

 Multiple R2, coefficient of determination

 Total proportion of variance accounted for by all predictors in 
the model

 High R2, values do not necessarily mean that a model will be 
useful for predicting Y

 Overfitting (adding essentially irrelevant predictors) can 
result in a high R2 in the absence of any predictive power

 If we fit a regression model with n-1 predictors R will always 
be = 1.0 unless we have a rare data set where two cases are 
identical on all predictors but differ on Y value

 Adjusted R2 takes into account our n and the number of 
predictors we have used in the model

Misuses/problems

 Multicollinearity
 exists when two or more independent variables (predictors) contribute 

redundant information to the model

 can think of conceptually as a problem in assigning unique variance 
components to variable

 creates computational problems and coefficients that do not make sense

 resolve by removing redundant predictor(s)

 Predicting outside the range of data that was used to generate the 
regression model
 positive linear relationship

 relationship may change-resulting in substantial error of estimation 

 Failure to explore alternative models
 need to be familiar with data

 examine relationships between variables

 be aware of potential interactions and include in model if necessary

 try different models

Standardized betas

with more than one independent variable:
b coefficients cannot be directly compared due 

to different scales across measures

standardized Beta coefficients allow us to 
compare the relative predictive power of 
variables in the equation

we get standardized Betas by converting all of 
our predictors to z-scores and running the 
regression
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Regression diagnostics

 help us assess the validity of our conclusions and 
their accuracy

 careful screening of the data cannot be 
overemphasized

Outliers
outliers: data points that lie outside the general linear 

pattern (midline is the regression line)

removal of outliers can dramatically affect the 
performance of a regression model

should be removed if there is reason to believe that other 
variables not in the model explain why the cases are 
unusual these cases may need a separate model

Outliers (cont.)

 outliers may also suggest that additional explanatory 
variables need to be brought into the model

 multivariate outliers can be difficult if not impossible to 
identify by visual inspection

 ex. 115 lbs. and 6 feet tall
 either observation alone is not unusual, but together they are.

 unusual combinations might include odd pairings of 
scores on separate measures of ability or different 
indices of production

 multivariate outliers represent results that when 
considered as a whole do not make sense

Distance, leverage, & influence

most common measure of distance (also called 
discrepancy) is the simple residual

 distance between any point and the regression 
surface

 identifies outliers on the dependent (y) variable

 leverage statistic, h, also called hat-value, 
identifies cases which may influence the 
regression model more than others

 with reasonably large n ranges from essentially 
0 (no influence on the model, actually the min is 
1/n) to 1
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Distance, leverage, & influence (cont.)

 leverage identifies outliers in the dv’s

<.2 fine, >.5 case should be examined

cases that are high on distance or 
leverage can strongly influence the 
regression but do not necessarily do so

points that are relatively high on both 
distance and leverage are very likely to 
have strong influence

Influence on regression line

Influence on regression line
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Influence on regression line

Cook’s distance (D)

 most common measure of influence of a case

 it is a function of the squared change that would occur in 
y’ if the observation were removed from the data

 interested in finding cases with D values much larger 
than the rest

 cut-off influential cases, D greater than 4/(n - k - 1)

 where n is the number of cases and k is the number of 
independents

 Cook's distance obtained by issuing “postestimation” 
command in Stata

Regression diagnostics
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Diagnostics put to use

Multicollinearity

 intercorrelation of independent variables

 R2s near 1 violate assumption of no perfect 
collinearity

 high R2s increase the standard error of the beta 
coefficients and make assessment of the unique 
role of each independent difficult or impossible

 simple correlations tell something about 
multicollinearity

 preferred method of assessing multicollinearity 
is to regress each independent on all the other 
independent variables in the equation

Multicollinearity (cont.)

 inspection of the correlation matrix reveals only 
bivariate multicollinearity, for bivariate 
correlations > 0.90

 to assess multivariate multicollinearity, one uses 
tolerance or VIF

may not be any extremely high bivariate 
correlations

 if any variable can be represented as a linear 
combination of other variables in the model, 
perfect multicollinearity exists
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Tolerance/Variance Inflation Factor (VIF)

 Tolerance
1 - R2 for the regression of that independent variable on all 

other independents, ignoring the dependent

as many tolerance coefficients as there are independents

higher intercorrelation of the independents, the tolerance will 
approach zero

part of the denominator for calculating the confidence limits 
on the b (partial regression) coefficient

 Variance inflation factor (VIF)
reciprocal of tolerance

when VIF is high there is high multicollinearity and instability 
of the b coefficients

Variance inflation factor (VIF)

Rj Tolerance VIF Impact on SEb

0.0 1.00 1.00 1.0
0.4 0.84 1.19 1.09
0.6 0.64 1.56 1.25
0.75 0.44 2.25 1.5
0.8 0.36 2.78 1.67
0.87 0.25 4.00 2.0
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