Advanced Experimental Design Psych 464 Jeffrey D. Leitzel, Ph.D. **Factor Analysis**

1

Outline/overview

- Applications of Factor Analysis
- Types of Factor Analysis (EFA vs. CFA)
- Terminology/Concepts
 - Factor loadings
 Communality
- Rotation
- Art of interpretation
- Dataset concerns
- Example(s)

2

Factor analysis

- widely used (and misused) multivariate technique
- salvage poorly planned and executed research
- fertile ground for "fishing expeditions"
- assumption smaller number of dimensions underlying relations in the data

Uses of Factor Analysis

- 1. data reduction
 - o large number of variables
 - o reduce to smaller number of dimensions
- 2. select a subset of variables
 - o composite measure
 - o drop those that don't fit
- 3. multicollinearity in multiple regression
 - o combine highly correlated predictors
 - o create uncorrelated factors to use as predictors
- 4. scale/index construction/validation
 - o have ideas about areas of domain
 - o construct items to measure each
 - o determine whether items selected represent coherent constructs

1

Simple structure

- want items in scales that represent only one factor per item
- items representing more than one factor are factorially complex
- generally drop these items during the measure construction phase

5

Exploratory vs. Confirmatory

- EFA: any indicator can be associated with any/all other factors
- no restrictions on loadings
- CFA: determine whether the number of factors and the loadings conform with what is expected
- do items purported to measure a factor or latent construct actually belong together?

Terminology - components vs. factors

- principal components analysis yields components
- principal axis factoring yields factors
- will use factors and components interchangeably

7

Principal Components Analysis

- most commonly used form of factor analysis
- seeks linear combination of variables that extracts the maximum variance
- this variance is removed and the process is repeated

8

Principal Axis Factoring

- same strategy
- operates only with the common variance
- seeks the smallest # of factors that can account for common variance
- PCA tries to account for common and unique variance

Factor loadings

- correlations between the items and the factors
- squared factor loading is the % of variance in that variable that can be explained by the factor
- in PCA it is labeled the component matrix, in PAF the factor matrix, with an oblique rotation called the pattern matrix.

10

Communality

- h²
- squared multiple correlation for a variable using all factors as predictors
- % of variance in the variable that can be explained by all factors

11

Eigenvalues

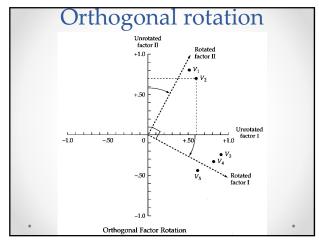

- a.k.a. characteristic roots
- reflect variance in all variables accounted for by each factor
- sum of the squared factor loadings
- Eigenvalue/# variables = proportion of variance explained by a factor

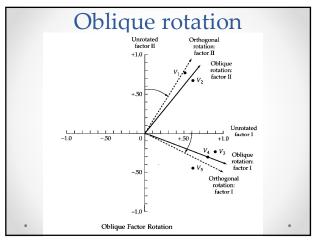
Criteria for # of factors to retain:

- 1. Kaiser criterion keep all with eigenvalues greater than or equal to 1.0
- 2. scree test plot components on x axis and eigenvalues on y axis
 - o where plot levels off the "scree" has occurred
 - o keep all factors prior to leveling
 - o criticized as generally selecting too few factors
- 3. Comprehensibility a non mathematical criterion
 - o retain factors that can be reasonably interpreted
 - o fit with the underlying theory
- ideally, retained factors account for 60 and preferably 75% of variance

preferably 73% of variance

13




14

Rotation

- facilitates interpretation
- unrotated solutions: variables have similar loadings on two or more factors
- makes hard to interpret which variables belong to which factor

.

Rotated and Unrotated Factor Loadings Variables I II I II V2 .60 .70 .16 .90 V3 .90 -.25 .95 .24 V4 .80 -.30 .84 .15 V5 .60 -.50 .76 .13

Types of rotation

- Varimax rotation
 - o most commonly used
 - o uncorrelated factors
- Oblimin
 - o an oblique rotation
 - o allows factors to be correlated
 - o does not mean they will be
- There are many others

19

When to use oblique rotation?

- constructs not reasonably expected to be uncorrelated
- unsure, request oblique rotation and examine factor correlation matrix, if correlations exceed .32 oblique warranted

20

How many...?

- · ...cases?
 - o many "rules" (in order of popularity)
 - 10 cases per item in the instrument
 - subjects to variables ratio of no less than 5
 - 5 times the number of variables or 100
 - minimum of 200 cases, regardless of stv ratio
- · ...variables?
 - o constructing a scale start with large number of items
 - measure domains with "best indicators" want at least 3 indicators of each
 - o more indicators = greater reliability of measurement

Interpreting loadings

- minimum cut-off is .3
- .4 or below is considered weak
- .6 and above is considered strong
- moderate at all points in between
- Guidelines from Comrey and Lee (1992)
 - o .71 excellent
 - o .63 very good
 - o .55 good
 - o .45 fair
 - o .32 poor

22

Final considerations

- Size of loadings effected by
 - o homogeneity of the sample
 - o restricted range
 - correlations will be lower
 - smaller loadings worth attention
- Naming factors
 - o descriptive names for the factors
 - o very important part of process
 - o fitting findings into informational network of the field

•