Advanced Experimental Design Psych 464 Jeffrey D. Leitzel, Ph.D.

Topic 4 Confirmatory Factor Analysis (CFA)

1

2

- single factor measurement models
- multiple factor measurement models
- CFA models
- higher order CFA models

EFA vs. CFA

- EFA each indicator is associated with all factors.
- No restrictions on loadings
- CFA determine whether the number of factors and the loadings conform based on theory
- Path models treated exogenous variables as though measured without error,
- Examine reliability and validity and if acceptable, use the scores in statistical analyses-traditional techniques do not adjust for measurement error in any way

4

Psychometric perspective

- Any measure we use consists of two components, traditional techniques do not separate the components.
- Observed Score = True Score + Error
- Error = noise, can obscure or attenuate the relationship between variables
- CFA allows us to estimate true score components
- Latent variables are thought to be "cleansed" of measurement error

5

SEM Software

- CFA and Structural Equation Modeling programs
- Commercial programs
- LISREL Karl Joreskog
- M-Plus Bengt Muthen
- EQS Peter Bentler
- AMOS Jim Arbuckle
- Free options
- Mx Mike Neale
- $^{\circ}$ R has a SEM package and LAVAAN

- Latent variable (factor) is large oval
- Observed variables are squares or rectangles
 Arrows point from the latent variable to the observed variables, indicates that the latent variable is responsible for the individual's
- Each observed variable has an error term
- Run in Stata using the SEM builder or the SEM command (can also use GSEM
- 7

Setting up CFA in Stata

 Have to set the scale of the latent variable
 first indicator for a factor used as reference indicator, unstandardized loading is set to 1.0.
 not an issue with standardized solution

- Latents must start with a capital letter
- Estimation methods

command)

- Maximum Likelihood [+VCE(robust)]
- Asymptotic Distribution Free
- Maximum Likelihood with Missing Values
- Typically use Maximum Likelihood

8

The SEM command

- For a one factor model, takes the form: SEM (Latent-> item1 ... item_n), method(ml) standardized
- Main model test is the Chi-Squared statistic
- Test works the opposite of what you have learned
- The Chi-Squared is test the discrepancy between the observed and model-implied covariance matrices
- Chi-Square is very sensitive to sample size
- Use fit indices to assess model fit

10

Fit indices

- RMSEA (Root mean square error of approximation) –Hu and Bentler (1999) suggest <.06, Browne and Cudeck (1993) suggest <.05=good fit, between .05-.08=adequate fit and >.1=poor fit
- pclose corresponds to a test of RMSEA < .05
- AIC and BIC useful for comparing models
- Arc and Brezisterin for comparing induces
 CFI (comparative fit index) and TLI (Tucker-Lewis index) -incremental fit indices, want values greater than .95
 SRMR (Standardized Root Mean Square Residual) absolute measure of fit standardized difference between the observed correlations and the predicted correlations.
 <.08=good fit
 CD(configure to Laboration fit)
- CD(coefficient of determination) closer to 1=better fit

11

12

SFM Modi	fication	n in	dice	ç		
SELLITIO	incation		aice	5		
Modification indices						
1					Standard	
1	MI	df	P>MI	EPC	EPC	
+						
cov(e.q5a,e.q5b)	114.681	1	0.00	.0761988	.316855	
cov(e.q5a,e.q5d)	15.982	1	0.00	.0309309	.1153873	
cov(e.q5a,e.q5h)	29.379	1	0.00	.0543851	.1619546	
cov(e.q5a,e.q5i)	16.094	1	0.00	.0439562	.1169391	
cov(e.q5a,e.q5j)	12.978	1	0.00	.0360964	.1083898	
cov(e.q5b,e.q5d)	49.679	1	0.00	.051317	.2086486	
cov(e.q5b,e.q5f)	8.579	1	0.00	.0209402	.0957948	
<11 rows omitted>						
cov(e.q5f,e.q5g)	138.332	1	0.00	.0949114	.4241064	
cov(e.q5f,e.q5h)	24.015	1	0.00	.0496578	.1626854	
cov(e.q5f,e.q5i)	8.902	1	0.00	.032594	.0953951	
cov(e.q5f,e.q5j)	56.081	1	0.00	.0760592	.2512606	
cov(e.q5g,e.q5h)	10.550	1	0.00	.0340917	.1080806	
cov(e.q5g,e.q5j)	11.149	1	0.00	.0351283	.1122968	
cov(e.q5h,e.q5i)	18.570	1	0.00	.0627778	.1303576	
cov(e.q5h,e.q5j)	313.261	1	0.00	.2373183	.5562199	
cov(e.q5i,e.q5j)	46.065	1	0.00	.0987791	.2068269	
EPC = expected parameter change						

