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Abstract. We give a simple technique to compute the distance between two points in an n-
dimensional Euclidean simplex, where the points are given in barycentric coordinates, using only

the edge lengths of that simplex. We then use this technique to verify a few computations which
will be used in subsequent papers. The most important application is a formula for intrinsically

computing the volume of a Euclidean simplex which is more efficient (and more natural) than

any previously documented methods.

1. Introduction

While studying the isometric embedding problem for metric simplicial complexes in [Min15],
the author came across the following basic problem. In attempting to work out basic examples,
one needs to be able to compute distances between points in a given Euclidean simplex given only
the barycentric coordinates of those points and the lengths of the edges of that simplex. More
specifically, let σ = 〈v0, v1, ..., vn〉 be an (abstract) n-dimensional simplex with vertices v0, ..., vn,
let eij denote the edge connecting the vertices vi and vj , let γij denote the length assigned to eij ,
and let x, y ∈ σ with barycentric coordinates x = (x0, ..., xn) and y = (y0, ..., yn). The questions
that needed to be answered were:

(1) For what values of γij can σ be realized as a legitimate simplex in En.
(2) Assuming that we have “good” values γij , give a simple formula to calculate dσ(x, y), the

length of the straight line segment connecting x to y within σ.

A naive attempt to solve question (2) is to construct an explicit isometric embedding of σ into
En, and then compute dσ(x, y) using basic Euclidean geometry. But for n ≥ 3 constructing this
embedding becomes quite cumbersome, and a much simpler method is described in Section 2.

Question (1) is an old problem, and was first solved by Cayley in [Cay41] way back in 1841.
Question (1) was also solved for hyperbolic and spherical simplices by Karliğa in [Kar04]. Another
solution to question (1), as well as the main ingredient to the solution to question (2), can be found
in an arXiv paper1 by Igor Rivin [Riv03]. But Rivin does not use his formula for the Gram matrix
to show how to compute distances interior to a simplex, which is the main issue that we take up
in this paper. In Sections 3, 4, and 5 we demonstrate the power of formula (2.3) by working out
some computations which would be difficult to produce directly. Most notably though is Theorem
4 which, in conjunction with equation (2.3), gives a simple formula for intrinsically computing the
volume of any given Euclidean n-simplex. This formula is computationally simpler than the widely
used Cayley-Menger determinant, as will be discussed in Section 6.

Date: June 3, 2015.
1While researching this problem I completely missed this paper. I have only found this paper very recently.
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2. The Main Formula

Linearly embed the n-simplex σ into Rn in some way, and by abuse of notation we will identify
each vertex vi with its image in Rn. For each i let wi := vi − v0, so wi is just the vector in Rn
representing the edge e0i. Since σ is embedded in Rn, the collection {wi}ni=1 forms a basis for Rn.
If we had values for 〈wi, wj〉 then we could use those values to define a symmetric bilinear form on
Rn. But observe that due to the symmetry and bilinearity of 〈, 〉:

〈wi − wj , wi − wj〉 = 〈wi, wi〉 − 2〈wi, wj〉+ 〈wj , wj〉

and so

(2.1) 〈wi, wj〉 =
1

2
(〈wi, wi〉+ 〈wj , wj〉 − 〈wi − wj , wi − wj〉) .

Now, if our embedding of σ into Rn were an isometry, then for all i we would have 〈wi, wi〉 = γ20i.
Equation (2.1) would then become

(2.2) 〈wi, wj〉 =
1

2
(γ20i + γ20j − γ2ij).

where γ2ij := 0 if i = j.
The trick now is to define the symmetric bilinear form 〈, 〉 by equation (2.2). This naturally

defines a quadratic form Q on Rn (using only the edge lengths assigned to σ, and our original
choice of embedding). It is easy to see that an orthogonal transformation will map our original
embedding to an isometric embedding with respect to the standard Euclidean metric if and only if
this form Q is positive definite. A simple proof can be found in the first few pages of [Bha07], and,
again, the above result can also be found in [Riv03]. This completes the solution to question (1).

To solve question (2), let x, y ∈ σ with barycentric coordinates (xi)
n
i=0 and (yi)

n
i=0, respectively.

Just as before we consider some linear embedding of σ into Rn and abuse notation by associating
x and y with their images in Rn. Note then that x =

∑n
i=0 xivi and y =

∑n
i=1 yivi. The square of

the distance dσ(x, y) between x and y in σ is given by 〈x − y, x − y〉, where 〈, 〉 is the symmetric
bilinear form defined above. What is left to do is to show how to use equation (2.2) to produce a
nice formula to compute dσ(x, y).

Define the quadratic form Q as above and note that, with respect to our basis {wi}ni=1, we can
express Q as an (n× n) symmetric matrix by

(2.3) Qij = (〈wi, wj〉)ij =

(
1

2

(
γ20i + γ20j − γ2ij

))
ij

.

Recall that, by the definition of barycentric coordinates,

(2.4) x0 = 1−
n∑
i=1

xi and y0 = 1−
n∑
i=1

yi.

With the help of equation (2.4) we compute

x− y =

n∑
i=0

(xi − yi)vi = (x0 − y0)v0 +

n∑
i=1

(xi − yi)vi

(2.5) = −
n∑
i=1

(xi − yi)v0 +

n∑
i=1

(xi − yi)vi =

n∑
i=1

(xi − yi)wi.
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Combining equations (2.3) and (2.5) yields

〈x− y, x− y〉 =

〈
n∑
i=1

(xi − yi)wi,
n∑
j=1

(xj − yj)wj

〉

(2.6) =

n∑
i,j=1

(xi − yi)(xj − yj)〈wi, wj〉 = [x− y] ·Q[x− y]

where “·” represents the standard Euclidean inner product, and where [x − y] is the vector in Rn
defined by [x − y] = (xi − yi)ni=1. Both the matrix Q and the vector [x − y] are expressed using
only the barycentric coordinates of x and y and the edge lengths assigned to σ. So, using equation
(2.6), computing distances in σ requires only matrix multiplication.

3. The Minimal Allowable Edge Length when All Other Edges Have Length 1

Let σ be as above, and assume that all edges of σ have length 1 except one edge whose length
we will denote by α. By symmetry, let e0n be the edge with length α, i.e. γ0n = α. The question
is, for what values of α does σ admit an affine isometric embedding into Rn? When n = 2 it is easy
to see that 0 < α < 2, and for n = 3 one observes that 0 < α <

√
3. But it starts to get a little

more subtle2 once n ≥ 4. Note that the quadratic form Q from Section 2 is

Q(α) =


1 1

2 . . . 1
2

1
2α

2

1
2 1 . . . 1

2
1
2α

2

...
...

. . .
...

...
1
2

1
2 . . . 1 1

2α
2

1
2α

2 1
2α

2 . . . 1
2α

2 α2


We need to find the values of α for which Q(α) is positive definite. We first need a Lemma:

Lemma 1. Let An and Bn denote the n× n matrices

An =


1 1

2 . . . 1
2

1
2 1 . . . 1

2
...

...
. . .

...
1
2

1
2 . . . 1

 , Bn =


1
2

1
2 . . . 1

2
1 1

2 . . . 1
2

...
. . . . . .

...
1
2 . . . 1 1

2


Then det(An) =

n+ 1

2n
and det(Bn) =

(−1)n+1

2n
.

Proof. The proof proceeds by (simultaneous) induction on n. The base cases are easily checked and
left to the reader.

Let us first compute det(An). Add negative of the first row to the nth row, which does not
change the determinant. Then cofactor expansion along the new nth row, along with using both

2When doing some research for [Min13], I once assumed α = 3
2

would always work. To my surprise I found out

that this leads to a degenerate simplex when n = 9, and does not lead to a realizable Euclidean simplex for all larger
dimensions.



4 BARRY MINEMYER

portions of the induction hypothesis, yields

det(An) = (−1)n+1

(
−1

2

)
det(Bn−1) +

1

2
det(An−1)

= (−1)n+1

(
−1

2

)
(−1)n

2n−1
+

(
1

2
· n

2n−1

)
=

1

2n
+

n

2n
=
n+ 1

2n
.

To compute det(Bn), add negative of row 1 to row n. The only term in the new nth row which
is not 0 is the second to last term, and it is 1

2 . Then cofactor expansion along the last row gives

det(Bn) = −1

2
det(Bn−1) = −1

2

(−1)n

2n−1
=

(−1)n+1

2n
.

�

With the aid of Lemma 1 we are now prepared to prove the following Theorem:

Theorem 2. The quadratic form Q(α) is positive definite if and only if 0 < α <

√
2n

n− 1
.

Remark 3. Note that

√
2n

n− 1
is a decreasing function, and lim

n→∞

√
2n

n− 1
=
√

2. So all values of α

with 0 < α <
√

2 always lead to a Euclidean simplex. This fact is used in [Min13].

Proof of Theorem 2. By Lemma 1 all of the minors of Q(α) which contain the (1, 1) entry are
positive. Thus, Q(α) is positive definite if and only if det(Q) > 0. To compute det(Q), factor an
α2 out of both the nth column and the nth row. This yields

det(Q) = α4

∣∣∣∣∣∣∣∣∣∣∣

1 1
2 . . . 1

2
1
2

1
2 1 . . . 1

2
1
2

...
...

. . .
...

...
1
2

1
2 . . . 1 1

2
1
2

1
2 . . . 1

2
1
α2

∣∣∣∣∣∣∣∣∣∣∣
Note that we are assuming that α > 0 since it is the side length of a non-degenerate simplex.

As in the proof of Lemma 1 we add negative the first row to the nth row and then use cofactor
expansion along the nth row to obtain

det(Q) = α4

(
(−1)n+1

(
−1

2

)
det(Bn−1) +

(
1

α2
− 1

2

)
det(An−1)

)
= α4

(
(−1)n

(
1

2

)
(−1)n

2n−1
+

(
1

α2
− 1

2

)
n

2n−1

)
(3.1) = α2

(
α2(1− n)

2n
+

n

2n−1

)
where the notation An and Bn comes from Lemma 1. We then see from equation (3.1) that

(3.2) det(Q) > 0 ⇐⇒ α2(1− n)

2n
+

n

2n−1
> 0 ⇐⇒ α <

√
2n

n− 1
.

�
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4. Volume of an n-Simplex via Edge Lengths

Theorem 4. Let σ = 〈v0, v1, . . . , vn〉 be an n-dimensional Euclidean simplex with edge lengths
{γij}ni,j=0. Let Q be the n× n matrix defined by

Qij =

(
1

2

(
γ20i + γ20j − γ2ij

))
.

Then

(4.1) Vol(σ) =
1

n!

√
det(Q)

Proof. Let σ, 〈vi〉ni=0, {γij}ni,j=1, and Q be as above. Isometrically embed σ into En, and let
wi := vi − v0 for all i. Let W = [w1 w2 . . . wn] be the n× n matrix whose columns are the vectors
in {wi}ni=1. It is well-known that det(W ) is the volume of the parallelpiped spanned by the vectors
in {wi}ni=1. Thus Vol(σ) = 1

n!det(W ). But notice that WTW = (wi · wj)ij = Q. So det(Q) =

det(W )2, which proves the Theorem. �

Remark 5. Combining Theorem 4 with equation (2.3) produces a very nice formula for intrinsically
computing the volume of an n-simplex, meaning that the formula depends only on the assigned
edge lengths and not on the coordinates of any of the vertices. The current technique for finding
such volumes is by using the Cayley-Menger determinant. This will be discussed in Section 6. For
now, it is worth pointing out that computing the same volume using a Cayley-Menger determinant
involves computing a (n+2)×(n+2) determinant and, in the author’s opinion, is much less natural.

In [KLM15] we are interested in knowing the edge length of an equilateral n-simplex whose
volume is 1. To compute this, let en denote the common edge length of σ. Then Q = (en)2An
where An is the notation used in Lemma 1. Hence

1 = Vol(σ) =
1

n!

√
det(Q) =

(en)n

n!

√
n+ 1

2n
.

Solving for en yields

(4.2) en =

(
n!

√
2n

n+ 1

) 1
n

As a last note, it is interesting to consider lim
n→∞

en. It is not hard to check that

lim
n→∞

(n!)
1
n =∞ and lim

n→∞

(√
2n

n+ 1

) 1
n

=
√

2

and thus lim
n→∞

en =∞. So, for an equilateral n-simplex to have volume 1, as n approaches infinity

the edge lengths must approach infinity as well. The geometric intuition here is to notice that the
equilateral n-simplex with unit edge lengths comprises of a smaller percentage of the unit hypercube
as n gets larger. Thus, the volume of the simplex decreases in n, and so the edge lengths must
increase to make the volume 1.
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5. Distance from the Barycenter to the Boundary of an Equilateral Simplex

As a final example of the utility of our matrix Q, let us compute the distance from the barycenter
to the boundary of an equilateral simplex. Let σ be an equilateral simplex, so that all edge lengths
are the same length γ := γij . Let b denote the barycenter of σ, meaning that b has barycentric

coordinates
(

1
n+1

)n
i=1

. Since σ is equilateral, the distance from b to the boundary of σ is equal to

the distance from b to the barycenter of any of the codimension one faces of σ. For convenience, we
compute the distance from b to b′, where b′ is the barycenter of the codimension one face opposite
the vertex v0. So b′ has barycentric coordinates

(
0, 1

n ,
1
n , . . . ,

1
n

)
.

Observe that

[b′ − b] =

(
1

n(n+ 1)

)n
i=1

and Qij =

{
γ2 if i = j
1
2γ

2 if i 6= j

A simple calculation then shows that

[b′ − b] ·Q[b′ − b] =
γ2

n2(n+ 1)2

(
n(n+ 1)

2

)
=

γ2

2n(n+ 1)
.

Thus,

(5.1) dσ(b, ∂σ) =
γ√

2n(n+ 1)

Of particular interest is knowing dσ(b, ∂σ) when σ is an equilateral simplex with volume 1. Using
the notation from Section 4 we have that γ = en, and combining equations (4.2) and (5.1) yields:

(5.2) dσ(b, ∂σ) =
en√

2n(n+ 1)
=

(
n!

√
2n

n+ 1

) 1
n

·

(
1√

2n(n+ 1)

)
=

(
n!√

nn(n+ 1)n+1

) 1
n

6. Cayley-Menger Determinants and Gromov’s K-Curvature Question

Given an oriented n-simplex σ = 〈v0, v1, . . . , vn〉 with associated edge lengths {γij}, one could
organize this data into an (n+ 1)× (n+ 1) matrix B = (bij) defined by

(6.1) bij = γ2ij

where γii := 0.
The first thing to point out is that the matrix Q defined by equation (2.3) and the matrix B in

equation (6.1) are “equivalent” in the sense that they are uniquely determined by the exact same
data. Moreover, this data (the edge lengths) can be easily recovered from either matrix. Therefore,
given Q it is easy to construct B, and vice versa.

The matrix B mentioned above was first considered by Cayley in [Cay41], and independently
studied 80 years later by Menger in [Men28]. They used the matrix B to intrinsically compute the
volume of σ just as in Theorem 4. This volume formula is:

(6.2) Vol(σ) =

(
(−1)n−1

2n(n!)2
det(B̄)

) 1
2

where B̄ is the (n + 2) × (n + 2) matrix obtained by placing B in the bottom right hand corner,
adding a top row of (0, 1, 1, . . . , 1), and a left column of (0, 1, 1, . . . , 1)T . The determinant det(B̄)
is often referred to as the Cayley-Menger determinant.
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As the matrices Q and B are defined using the exact same data, the formulas (4.1) and (6.2)
have some similarities. But formula (4.1) is certainly computationally simpler because it requires
computing an n×n determinant instead of an (n+ 2)× (n+ 2) determinant. Of course, one makes
a slight sacrifice in the simplicity of the matrix representation when considering Q over B. But in
return one gains a simpler volume formula as well as a natural means of computing distances and
other geometric quantities in an intrinsic manner.

In closing, we relate the matrix Q with Gromov’s K-curvature problem found in [Gro01]. The
following is taken almost directly from [Gro01].

Let (X , d) be an arbitrary metric space, and let Mr denote the space of positive symmetric r× r
matrices. Let Kr(X ) ⊂ Mr denote the subset realizable by the distances among r-tuples of points
as given by the matrix B in equation (6.1). i.e., the r × r matrix3 B = (bij) ∈ Kr(X ) if and
only if there exists an r-tuple of points (x1, . . . , xr) ∈ X r such that d(xi, xj)

2 = bij for all i, j.
Then every subset K ⊂ Mr defines the global K-curvature class, which consists of the spaces X
with Kr(X ) ⊂ K, and the local K-curvature class, where each point x ∈ X is required to admit a
neighborhood U with Kr(U) ⊂ K. Gromov’s curvature problem is then:

Gromov’s Curvature Problem: Given K ⊂Mr, describe the spaces X in the K-curvature class.

This problem was answered in some very specific casess by Gromov in [Gro01]. When r = 4,
this problem was solved (in the global setting) by Berg and Nikolaev in [BN08] for CAT(0) spaces,
and by Lebedeva and Petrunin in [LP10] for spaces whose curvature is bounded below. But all of
these solutions deal with the data in the matrix B and not the actual matrix B itself.

In light of the discussion above, we can equivalently replace the matrix B with the matrix Q
when discussing Gromov’s curvature problem. But the matrix Q seems to more closely capture the
geometry of the points involved. So one could ask the same question but look for answers which
intrinsically depend on Q instead of inequalities using the specific distances. For example, one
could ask how knowledge of the eigenvalues and associated eigenspaces of such matrices Q effect
the geometry of the underlying space X , and vice versa.

Acknowledgements. Ross Geoghegan has had a tremendous positive influence on the author’s
career, and as such the author is honored to have a paper published in these conference proceedings.
The author would also like to thank the anonymous referee for both catching various typographical
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