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Abstract. In this paper we study manifolds of the form X \ Y , where X

denotes either Hn or CHn, and Y is a totally geodesic submanifold with arbi-
trary codimension. The main results that we prove are curvature formulas for

warped product metrics on X \ Y expressed in spherical coordinates about Y .
We also discuss future applications of these formulas.

1. Introduction

1.1. Main results. Let Hn denote (real) n-dimensional hyperbolic space, and CHn
denote (complex) n-dimensional complex hyperbolic space. In this paper, X will
denote either Hn or CHn, and Y will denote a totally geodesic submanifold of X.
So if X = Hn then Y = Hk, and if X = CHn then Y is either Hk or CHk for some
1 ≤ k ≤ n.

Let M be a Riemannian manifold, and N a totally geodesic submanifold of M .
We say that the pair (M,N) is modeled on (X,Y ) if there exist lattices Γ ⊂ Isom(X)
and Λ ⊂ Isom(Y ) such that M = X/Γ, N = Y/Λ, and Λ < Γ. We also allow for
the possibility that N is disconnected. That is, we allow for multiple lattices Λ < Γ
which correspond to different (disjoint) copies of Hk ⊂ Hn or Hk,CHk ⊂ CHn. The
author, along with several collaborators, has been undergoing a systematic study
of the geometry and topology of manifolds “affiliated” with the pair (M,N). The
purpose of this paper is to continue the development of the curvature formulas used
in this research.

More specifically, in this paper we develop curvature formulas for warped prod-
uct metrics on X \ Y when the pair (X,Y ) is one of (Hn,Hk), (CHn,Hn), or
(CHn,CHk). These cases are detailed in Sections 2, 3, and 4, respectively. In each
case we write the metric on X in spherical coordinates about Y (Theorems 2.1, 3.1,
and 4.1), we consider the corresponding warped product metric where we allow for
variable coefficients in the metric tensor (equations (2.2), (3.3), and (4.2)), and we
compute formulas for the components of the (4, 0) curvature tensor with respect to
these coefficient functions (Theorems 2.2, 3.4, and 4.3). These last three Theorems
should be considered the main results of this paper.

1.2. Applications for these curvature formulas. While the author believes
that the curvature formulas in Theorems 2.2, 3.4, and 4.3 are of their own inde-
pendent interest, the primary motivation for the development of these curvature
formulas is for the following application.
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In [GT87] Gromov and Thurston famously construct pinched negatively curved
manifolds which do not admit hyperbolic metrics. In this construction they consider
pairs (M,N) modeled on (Hn,Hn−2) which satisfy a few special topological and
geometric conditions. The pinched negatively curved manifold B which does not
admit a hyperbolic metric is then the k-fold cyclic branched cover of M about N
(where k ∈ N can take all but possibly finitely many values). The difficulty in all
of this is showing that B exists, constructing a pinched negatively curved metric
on B, and proving that B does not admit a hyperbolic metric.

The author, along with several collaborators, has been investigating whether or
not this construction could be extended to the locally symmetric pairs (CHn,CHn−2)
and (CH2,H2). In a sequence of forthcoming papers (see [LMMT] and [Min18b])
we will show that in both of these cases the k-fold cyclic ramified cover of M about
N does admit a negatively curved Riemannian metric whose sectional curvature is
both bounded from below and bounded away from zero (assuming that this cyclic
ramified covering exists as a smooth manifold). The constructions of these Rie-
mannian metrics are dependent on the curvature formulas proved in Theorems 3.4
and 4.3 below.

A second, more minor, application of these curvature formulas is the following. In
[AP16] Avramidi and Phan prove that if M is a complete finite volume Riemannian
manifold with bounded nonpositive sectional curvature, then the “thin part” of M
(the portion of M “heading off” toward the cusp) can only have nonzero homology
up to dimension bn2 c − 1. In particular, if n = 5, then the thin part of M must be

aspherical. In [Min18a] the author uses the formulas for the case (CH3,CH1) to
show that this result does not, in some sense, generalize to distributions. Given any
manifold of the form M \N , where (M,N) is modeled on (CH3,CH1), there exists
a Riemannian metric g and a non-integrable 5-dimensional distribution D where g
restricted to D satisfies all of the conditions above. The ends of M \N are of the
form S3×R2, and so if D were integrable then the corresponding submanifold with
this inherited metric would violate the results in [AP16]. Of course, this metric can
more generally be constructed on mainfolds M \N modeled on (CHn,CHn−2).

One last remark about these curvature formulas. In [Bel12], [Bel11], and [Min17]
it is proved that the manifold M\N , where (M,N) is modeled on one of (Hn,Hn−2),
(CHn,CHn−2), or (CH2,H2), admits a complete, finite volume, negatively curved
Riemannian metric. The curvature formulas developed in this paper generalize the
curvature formulas computed and used in these three articles.

1.3. Obstructions to M \N admitting a complete, finite volume Riemann-
ian metric of negative sectional curvature. Consider the finite volume mani-
fold M \N . The three cases where N has codimension two in M are modeled on
one of (Hn,Hn−2), (CHn,CHn−1), or (CH2,H2). In all of these cases, the mani-
fold M \ N admits a complete, finite volume Riemannian metric whose sectional
curvature is bounded above by a negative constant ([Bel12], [Bel11], and [Min17]).

In general, when the codimension of N is greater than two, the manifold M \N
should not admit a complete, finite volume, negatively curved metric because it is
not aspherical. This fact should be realized in the curvature equations in Theorems
2.2, 3.4, and 4.3. More specifically, there should be an equation(s) which obstructs
such a metric, but this (these) curvature equations should vanish when N has
codimension two.
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In all cases except one “exceptional case” the obstruction is a sectional curvature
equation of the form

(1.1)
1

v2
−
(
v′

v

)2

where v : R → R is a positive, increasing real-valued function. One easily checks
that equation (1.1) is nonpositive if and only if 1 ≤ (v′)2. But for the Riemannian
metric to have any chance of having finite volume one needs limr→−∞ v′(r) = 0.

The one exceptional case is when (M,N) is modeled on (CHn,CHn−2). Here, all
curvature equations of the form (1.1) vanish, and so this obstruction is considerably
more subtle. It should be noted that the vanishing of (1.1) is what leads to the
metric in the second application mentioned above. A detailed discussion about this
situation is given in Subsection 4.6.

1.4. Layout of this paper. In Section 2 we study manifolds of the form Hn \Hk,
in Section 3 we consider CHn \ Hn, and in Section 4 we analyze CHn \ CHk. In
Section 3 we restrict our attention to CH3 \ H3 and in Section 4 we restrict to
CH5 \ CH2 for ease of exposition. In each case, these are the smallest choices for
n and k which capture all of the different formulas for the curvature tensor (with
respect to the frames chosen in each Section). That is, from these cases one knows
all of curvature formulas for general CHn \ Hn and CHn \ CHk. Also, notice that
we only consider CHn \ Hn in Section 3 instead of the more general CHn \ Hk.
The reason for this is due to simplicity: in general there are several ways that Hk
can sit inside of CHn which requires a case-by-case analysis. But in all situations
this copy of Hk is contained in a copy of Hn, and then one can apply our formulas
here to CHn \ Hn. Section 5 is a short Section on some known formulas that are
referenced throughout the paper, and Section 6 is devoted to computing values for
Lie brackets from Section 3.

We end this Section with the following two remarks which deal with notational
differences between this paper and references [Bel12], [Bel11], and [Min17].

Remark 1.1. In this paper we scale the complex hyperbolic metric to have sectional
curvatures in the interval [−4,−1], whereas in the previous three references the
curvatures were scaled to

[
−1,− 1

4

]
. To adjust the formulas in [Bel12], [Bel11],

and [Min17], one simply multiplies the warping functions h, v, and hr by 1
2 . With

this adjustment (and the following Remark), one sees that the formulas in these
references agree with the codimension two versions of the formulas in Theorems
2.2, 3.4, and 4.3.

Remark 1.2. Another major notational difference between this paper and the pa-
pers [Bel11] and [Bel12] is the formula used for the curvature tensor. Let g be
a Riemannian metric with Levi-Civita connection ∇, and let W,X, Y, and Z be
vector fields. In this paper we follow [doC92] and use the notation

(1.2) R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z

for the curvature tensor R of g. The negative of this formula is used in [Bel11] and
[Bel12]. So, in particular, the (4, 0)-curvature tensor 〈R(X,Y )Z,W 〉g in this paper
is equivalent to 〈R(X,Y )W,Z〉g in [Bel11] and [Bel12].
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2. Curvature formulas for warped product metrics on Hn \Hk

2.1. Expressing the metric in Hn in spherical coordinates about Hk. Let
us first note that in Subsections 2.1, 3.1, and 4.1 we closely follow the notation and
terminology used in [Bel11].

Let hn denote the hyperbolic metric on Hn. Since Hk is a complete totally geo-
desic submanifold of the negatively curved manifold Hn, there exists an orthogonal
projection map π : Hn → Hk. This map π is a fiber bundle whose fibers are totally
geodesic (n− k)-planes.

For r > 0 let E(r) denote the r-neighborhood of Hk. Then E(r) is a real
hypersurface in Hn, and consequently we can decompose hn as

hn = (hn)r + dr2

where (hn)r is the induced Riemannian metric on E(r). Let πr : E(r)→ Hk denote
the restriction of π to E(r). Note that πr is an Sn−k−1-bundle whose fiber over any
point q ∈ Hk is the (n−k−1)-sphere of radius r in the totally geodesic (n−k)-plane
π−1(q). The tangent bundle splits as an orthogonal sum V(r) ⊕ H(r) where V(r)
is tangent to the sphere π−1r (q) and H(r) is the orthogonal complement to V(r).

It is well known (see [Bel12] or [GT87] when k = n− 2 and [Ont15] for general
k) that for an appropriate identification of E(r) ∼= Hk × Sn−k−1 the metric (hn)r
can be written as

(hn)r = cosh2(r)hk + sinh2(r)σn−k−1

where hk denotes the hyperbolic metric on Hk and σn−k−1 denotes the round
metric on the unit sphere Sn−k−1. Note that (hn)r restricted to H(r) is cosh2(r)hk

and (hn)r restricted to V(r) is sinh2(r)σn−k−1. We summarize this in the following
Theorem.

Theorem 2.1. The hyperbolic manifold Hn\Hk can be written as E×(0,∞) where
E ∼= Hk × Sn−k−1 equipped with the metric

(2.1) hn = cosh2(r)hk + sinh2(r)σn−k−1 + dr2.

2.2. The warped product metric and curvature formulas. For some positive,
increasing real-valued functions h, v : (0,∞)→ R define

(2.2) λr := h2(r)hk + v2(r)σn−k−1 and λ := λr + dr2.

Of course, λ = hn when h = cosh(r) and v = sinh(r).
Fix p ∈ E(r) for some r and let q = π(p) ∈ Hk. Let {X̌i}ki=1 be an orthonormal

frame of Hk near q which satisfies [X̌i, X̌j ]q = 0 for all 1 ≤ i, j ≤ k. These
vector fields can be extended to a collection of orthogonal vector fields {Xi}ki=1 in
a neighborhood of p via the inclusion Hk → E × (0,∞). Analogously, define an
orthonormal frame {X̌j}n−1j=k+1 of Sn−k−1 near (the projection of) p which satisfies

[X̌i, X̌j ]p = 0 for all k + 1 ≤ i, j ≤ n − 1, and extend this frame to vector fields

{Xj}n−1j=k+1 in a neighborhood of p via the inclusion Sn−k−1 → E × (0,∞). Lastly,

let Xn = ∂
∂r .

The orthogonal collection of vector fields {Xi}ni=1 satisfies the following:

(1) 〈Xi, Xi〉λ = h2 for 1 ≤ i ≤ k.
(2) 〈Xi, Xi〉λ = v2 for k + 1 ≤ i ≤ n− 1.
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(3) 〈Xn, Xn〉λ = 1.
(4) [Xi, Xj ]p = 0 for all i, j.

It should be noted that property (4) is special to the real hyperbolic case and will
not be true in Sections 3 and 4 below.

Now define the corresponding orthonormal frame near p by Yi = 1
hXi for 1 ≤

i ≤ k, Yj = 1
vXj for k + 1 ≤ j ≤ n − 1, and Yn = Xn. This frame satisfies the

property that [Yi, Yj ]p = 0 for 1 ≤ i, j ≤ n − 1. We can then apply formulas (5.4)
through (5.7) to write the (4,0) curvature tensor Rλ in terms of Rλr as follows,
where 1 ≤ a, b ≤ k and k + 1 ≤ c, d ≤ n− 1.

Kλ(Ya, Yb) = Kλr (Ya, Yb)−
(
h′

h

)2

Kλ(Yc, Yd) = Kλr (Yc, Yd)−
(
v′

v

)2

Kλ(Ya, Yc) = Kλr (Ya, Yc)−
h′v′

hv
Kλ(Ya, Yn) = −h

′′

h
Kλ(Yc, Yn) = −v

′′

v
.

In the above equations, we use the notation

K(X,Y ) = 〈R(X,Y )X,Y 〉

to denote the sectional curvature of the 2-plane spanned by X and Y . The above
equations are the only terms that appear (up to the symmetries of the curvature
tensor). So, in particular, all mixed terms of Rλ are identically zero.

Now, the (4, 0) curvature tensor Rλr is simple to calculate. Since both h(r)Hk
and v(r)Sn−k−1 have constant curvature, and h(r)Hk × v(r)Sn−k−1 is metrically a
product, we have that for 1 ≤ a, b,≤ k and k + 1 ≤ c, d ≤ n− 1:

Kλr (Ya, Yb) = − 1

h2
Kλr (Yc, Yd) =

1

v2
Kλr (Ya, Yc) = 0.

Putting this all together yields the following.

Theorem 2.2. Up to the symmetries of the curvature tensor, the only nonzero
terms of the (4, 0) curvature tensor Rλ are:

Kλ(Ya, Yb) = − 1

h2
−
(
h′

h

)2

Kλ(Yc, Yd) =
1

v2
−
(
v′

v

)2

Kλ(Ya, Yc) = −h
′v′

hv
Kλ(Ya, Yn) = −h

′′

h
Kλ(Yc, Yn) = −v

′′

v

where 1 ≤ a, b,≤ k and k + 1 ≤ c, d ≤ n− 1.

One easily checks that plugging in the values v(r) = sinh(r) and h(r) = cosh(r)
gives all sectional curvatures of −1.

3. Curvature formulas for warped product metrics on CHn \Hn

As mentioned in the Introduction, for simplicity we are going to restrict ourselves
to the case when n = 3. This is exactly the smallest dimension which captures
every nonzero component of the curvature tensor, and so nothing is lost with this
restriction (see the comments after Theorem 3.4 for more discussion).
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3.1. Expressing the metric in CH3 in spherical coordinates about H3. Let
c3 denote the complex hyperbolic metric on CH3 normalized to have constant holo-
morphic sectional curvature−4. Since H3 is a complete totally geodesic submanifold
of the negatively curved manifold CH3, there exists an orthogonal projection map
π : CH3 → H3. This map π is a fiber bundle whose fibers are totally real totally
geodesic 3-planes, and therefore have constant sectional curvature −1.

For r > 0 let E(r) denote the r-neighborhood of H3. Then E(r) is a real
hypersurface in CH3, and consequently we can decompose c3 as

c3 = (c3)r + dr2

where (c3)r is the induced Riemannian metric on E(r). Let πr : E(r)→ H3 denote
the restriction of π to E(r). Note that πr is an S2-bundle whose fiber over any
point q ∈ H3 is the 2-sphere of radius r in the totally real totally geodesic 3-plane
π−1(q). The tangent bundle splits as an orthogonal sum V(r) ⊕ H(r) where V(r)
is tangent to the 2-sphere π−1r (q) and H(r) is the orthogonal complement to V(r).

For r, s > 0 there exists a diffeomorphism φsr : E(s) → E(r) induced by the
geodesic flow along the totally real totally geodesic 3-planes orthogonal to H3. Fix
p ∈ E(r) arbitrary, let q = π(p) ∈ H3, and let γ be the unit speed geodesic such
that γ(0) = q and γ(r) = p. In what follows, all computations are considered in
the tangent space TpE(r).

Note that V(r) is tangent to both E(r) and the totally real totally geodesic 3-
plane π−1(q). Then since π−1(q) is preserved by the geodesic flow, we have that
dφsr takes V(s) to V(r). Since exp−1p

(
π−1(q)

)
is a totally real 3-plane, there exists

a suitable identification π−1(q) ∼= S2 × (0,∞) where the metric c3 restricted to
π−1(q) can be written as

sinh2(r)σ2 + dr2.

Here, σ2 is the round metric on the unit 2-sphere.
Let

(3.1) X̌4 =
∂

∂θ
X̌5 =

1

sin θ

∂

∂ψ

be an orthonormal frame on a neighborhood of (the projection of) p in S2, and
extend these to orthogonal vector fields {X4, X5} on π−1(q) via the inclusion S2 →
π−1(q). Note that both X4 and X5 are invariant under dφsr. Let X6 = ∂

∂r .

Let J denote the complex structure on CH3. It is well known that Jp preserves
complex subspaces in TpCH3 and maps real subspaces into their orthogonal comple-
ment. Since (X4, X5, X6) spans a real 3-plane in TpCH3, its orthogonal complement
Hp(r) is spanned by (JX4, JX5, JX6). In what follows we define vector fields X1,
X2, and X3 which are just scaled copies of JX4, JX5, and JX6, respectively.

3.1.1. The vector fields X1 and X2. First note that (JX4, X6) spans a real 2-
plane in TpCH3 (since its J-image is contained in its orthogonal complement).
So P = exp (span (JX4, X6)) is a totally real totally geodesic 2-plane in CH3 which
intersects H3 orthogonally. Since this intersection is orthogonal, P is preserved by
the geodesic flow φ. Therefore, span (JX4) is preserved by dφ.

The set P ∩H3 is a (real) geodesic. Let α(s) denote this geodesic parameterized
with respect to arc length so that α(0) = q. Then define (X1)p = (dπ)−1p α′(0).
There exists a positive real-valued function a(r, s) so that the metric c3 restricted to
P is of the form dr2+a2(r, s)ds2. But since R acts by isometries on P via translation
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along α, the function a(r, s) is independent of s. Then since the curvature of a real
2-plane is −1, we have that a(r) = cosh(r).

We analogously define X2 by replacing X4 with X5 in the above description.
All conclusions follow in an identical manner. Thus, we can write the metric c3
restricted to expp(X1, X2, X6) as

cosh2(r)(dX2
1 + dX2

2 ) + dr2.

3.1.2. The vector field X3. This is also mostly analogous to the definition of X1.
But this time note that (JX6, X6) spans a complex line in TpCH3 (since it is
preserved by its J-image). So Q = expp (span (JX6, X6)) is a complex geodesic in

CH3 which intersects H3 orthogonally. Since this intersection is orthogonal, Q is
preserved by the geodesic flow φ. Therefore, span (JX6) is preserved by dφ.

The set Q∩H3 is a (real) geodesic. Let β(t) denote this geodesic parameterized
with respect to arc length so that β(0) = q. Then define (X3)p = (dπ)−1β′(0).
There exists a positive real-valued function b(r, t) so that the metric c3 restricted
to Q is of the form dr2 + b2(r, t)dt2. But since R acts by isometries on Q via
translation along β, the function b(r, t) is independent of t. Then since the curvature
of a complex geodesic is −4, we have that b(r) = cosh(2r).

3.1.3. Conclusion.

Theorem 3.1. The complex hyperbolic manifold CH3 \H3 can be written as E ×
(0,∞) where E ∼= H3 × S2 equipped with the metric

(3.2) c3 = cosh2(r)(dX2
1 + dX2

2 ) + cosh2(2r)dX2
3 + sinh2(r)(dX2

4 + dX2
5 ) + dr2.

In equation (3.2), dX1 through dX5 denote the covector fields dual to the vector
fields X1 through X5, respectively. Lastly, notice that dX2

1 +dX2
2 is the hyperbolic

metric with constant sectional curvature −1, and dX2
4 +dX2

5 is the spherical metric
with constant sectional curvature 1.

3.2. The warped product metric and curvature formulas in CH3 \H3. For
some positive, increasing real-valued functions h, hr, v : (0,∞)→ R define

µr := h2(r)(dX2
1 + dX2

2 ) + h2r(r)dX
2
3 + v2(r)(dX2

4 + dX2
5 )

and

(3.3) µ := µr + dr2.

Of course, µ = c3 when h = cosh(r), hr = cosh(2r), and v = sinh(r).
Define an orthonormal basis {Yi}6i=1 with respect to µ by

Y1 =
1

h
X1 Y2 =

1

h
X2 Y3 =

1

hr
X3(3.4)

Y4 =
1

v
X4 Y5 =

1

v
X5 Y6 = X6.

Our goal is to compute formulas for the components of the (4, 0) curvature tensor
Rµ in terms of the warping functions h, hr, and v (this is the content of Theorem
3.4). As a first step, we need to compute the components of the (4, 0) curvature
tensor Rc3 of the complex hyperbolic metric with respect to the orthonormal basis
given above. We can do this with the help of formula (5.1). To use this formula
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note that, by construction, we have that JY4 = Y1, JY5 = Y2, and JY6 = Y3 (again,
when the metric is c3, that is, when h = cosh(r), hr = cosh(2r), and v = sinh(r)).
Lastly, we use the notation

Rc3

ijkl := 〈Rc3(Yi, Yj)Yk, Yl〉c3 .

Then, up to the symmetries of the curvature tensor, the nonzero components of the
(4, 0) curvature tensor Rc3 are

−4 =Rc3
1414 = Rc3

2525 = Rc3
3636(3.5)

−1 =Rc3
1212 = Rc3

1313 = Rc3
1515 = Rc3

1616 = Rc3
2323 = Rc3

2424(3.6)

= Rc3
2626 = Rc3

3434 = Rc3
3535 = Rc3

4545 = Rc3
4646 = Rc3

5656

−2 =Rc3
1425 = Rc3

1436 = Rc3
2536(3.7)

−1 =Rc3
1245 = Rc3

1346 = Rc3
2356 = Rc3

1524 = Rc3
1634 = Rc3

2635.(3.8)

3.3. Lie brackets. We now need to compute the values of the Lie brackets of the
orthogonal basis {Xi}6i=1. A first observation is that, by construction, each of these
vector fields is invariant under the flow of ∂

∂r . This implies that [Xi, X6] = 0 for all
1 ≤ i ≤ 6. From this we can deduce that

[Y1, Y6] =
h′

h
Y1 [Y2, Y6] =

h′

h
Y2 [Y3, Y6] =

h′r
hr
Y3

[Y4, Y6] =
v′

v
Y4 [Y5, Y6] =

v′

v
Y5.

Next, we know that each Lie bracket is tangent to the level surfaces of r. Thus,
for all 1 ≤ i, j ≤ 6, the Lie bracket [Xi, Xj ] has no X6 term. For all 1 ≤ i, j, k ≤ 5
define structure constants ckij by

(3.9) [Xi, Xj ] =

5∑
k=1

ckijXk.

Two quick observations about the structure constants. The first is that ckij =

−ckji due to the anti-symmetry of the Lie bracket. The second observation is about

the values of c445 and c545. Recall the definitions for X̌4 and X̌5 from equation (3.1).
Then

(3.10)
[
X̌4, X̌5

]
=

[
∂

∂θ
,

1

sin(θ)

∂

∂ψ

]
=
− cos(θ)

sin2(θ)

∂

∂ψ
= − cot(θ)X̌5.

We therefore conclude that c445 = 0 and c545 = − cot(θ).
The following Theorem gives almost a full description of the values of the Lie

brackets. Some quantities are only defined up to sign, but this is sufficient to
compute the curvature formulas in Theorem 3.4. The interested reader can find
the proof of Theorem 3.2 in Section 6.

Theorem 3.2. The values for the Lie brackets in equation (3.9) are

[X1, X2] = ±X1 [X1, X3] = ∓ cot(θ)X2 +X4

[X1, X4] = X3 ∓X5 [X1, X5] = − cot(θ)X2 ±X4

[X2, X3] = ± cot(θ)X1 +X5 [X2, X4] = 0
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[X2, X5] = cot(θ)X1 +X3 [X3, X4] = −X1 ± cot(θ)X5

[X3, X5] = −X2 ∓ cot(θ)X4 [X4, X5] = − cot(θ)X5

In the above equations, all of the ± and ∓ signs are related. For example, if it is
the case that [X1, X2] = X1, then [X1, X4] = X3 −X5 and so on.

3.4. The Levi-Civita connection and formulas for the (4,0) curvature ten-
sor Rµ. In this Subsection we first compute the Levi-Civita connection ∇ associ-
ated to the metric µ with respect to the frame (Yi)

6
i=1. The difficult part in all of

this is computing the Lie brackets in Theorem 3.2. From there it is now a simple
calculation using formula (5.3) to prove the following Theorem.

Theorem 3.3. The Levi-Civita connection ∇ compatible with µ is determined by
the 36 equations

•∇Y1
Y1 =∓ 1

h
Y2 −

h′

h
Y6 • ∇Y3

Y4 = −1

2

(
h

hrv
− hr
hv
− v

hhr

)
Y1 ±

1

hr
cot(θ)Y5

•∇Y1Y2 =± 1

h
Y1 • ∇Y3Y5 = −1

2

(
h

hrv
− hr
hv
− v

hhr

)
Y2 ∓

1

hr
cot(θ)Y4

•∇Y1
Y3 =

1

2

(
h

hrv
− hr
hv

+
v

hhr

)
Y4 • ∇Y4

Y1 = −1

2

(
h

hrv
+
hr
hv

+
v

hhr

)
Y3

•∇Y1
Y4 =− 1

2

(
h

hrv
− hr
hv

+
v

hhr

)
Y3 ∓

1

h
Y5 • ∇Y4

Y2 = 0

•∇Y1Y5 =± 1

h
Y4 • ∇Y4Y3 =

1

2

(
h

hrv
+
hr
hv

+
v

hhr

)
Y1

•∇Y2
Y1 =0 • ∇Y4

Y4 = −v
′

v
Y6

•∇Y2
Y2 =− h′

h
Y6 • ∇Y4

Y5 = 0

•∇Y2
Y3 =

1

2

(
h

hrv
− hr
hv

+
v

hhr

)
Y5 • ∇Y5

Y1 =
1

v
cot(θ)Y2

•∇Y2
Y4 =0 • ∇Y5

Y2 = −1

v
cot(θ)Y1 −

1

2

(
h

hrv
+
hr
hv

+
v

hhr

)
Y3

•∇Y2
Y5 =− 1

2

(
h

hrv
− hr
hv

+
v

hhr

)
Y3 • ∇Y5

Y3 =
1

2

(
h

hrv
+
hr
hv

+
v

hhr

)
Y2

•∇Y3
Y1 =± 1

hr
cot(θ)Y2 +

1

2

(
h

hrv
− hr
vh
− v

hhr

)
Y4 • ∇Y5

Y4 =
1

v
cot(θ)Y5

•∇Y3Y2 =∓ 1

hr
cot(θ)Y1 +

1

2

(
h

hrv
− hr
hv
− v

hhr

)
Y5

•∇Y3
Y3 =− h′r

hr
Y6 • ∇Y5

Y5 = −1

v
cot(θ)Y4 −

v′

v
Y6

•∇Y1Y6 =
h′

h
Y1 • ∇Y2Y6 =

h′

h
Y2 • ∇Y3Y6 =

h′r
hr
Y3 • ∇Y4Y6 =

v′

v
Y4 • ∇Y5Y6 =

v′

v
Y5

• 0 = ∇Y6
Y1 = ∇Y6

Y2 = ∇Y6
Y3 = ∇Y6

Y4 = ∇Y6
Y5 = ∇Y6

Y6
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By combining Theorem 3.3 with equation (1.2), and remembering that Y6 =
X6 = ∂

∂r and X4 = ∂
∂θ , we compute the following formulas for the (4, 0) curvature

tensor Rµ. As in equations (3.5) through (3.8) we use the notation:

Rµijkl := 〈Rµ(Yi, Yj)Yk, Yl〉µ.

Theorem 3.4. In terms of the basis given in equation (3.4), the only independent
nonzero components of the (4, 0) curvature tensor Rµ are the following:

Rµ1212 = −
(
h′

h

)2

− 1

h2
Rµ4545 = −

(
v′

v

)2

+
1

v2
Rµ1515 = Rµ2424 = −h

′v′

hv

Rµ1414 = Rµ2525 = −v
′h′

vh
−
(
−v2

4h2h2r
− h2

4v2h2r
+

3h2r
4v2h2

− 1

2v2
+

1

2h2
− 1

2h2r

)
Rµ3434 = Rµ3535 = −v

′h′r
vhr

−
(
−v2

4h2h2r
+

3h2

4v2h2r
− h2r

4v2h2
− 1

2v2
− 1

2h2
+

1

2h2r

)
Rµ1313 = Rµ2323 = −h

′h′r
hhr

−
(

3v2

4h2h2r
− h2

4v2h2r
− h2r

4v2h2
+

1

2v2
+

1

2h2
+

1

2h2r

)
Rµ1616 = Rµ2626 = −h

′′

h
Rµ3636 = −h

′′
r

hr
Rµ4646 = Rµ5656 = −v

′′

v

Rµ1436 = Rµ2536 =
1

2hr

[(
h

v

)′
−
( v
h

)′
−
(
h2r
vh

)′]

Rµ1634 = Rµ2635 =
1

2h

[
−
(
hr
v

)′
+

(
v

hr

)′
+

(
h2

vhr

)′]

Rµ1346 = Rµ2356 =
−1

2v

[(
h

hr

)′
+

(
hr
h

)′
+

(
v2

hhr

)′]

Rµ1425 =
1

2v2
− 1

2h2
− h2r

2h2v2

Rµ1245 = −1

4

(
h2

h2rv
2

+
h2r
h2v2

+
v2

h2h2r
+

2

h2
+

2

h2r
− 2

v2

)
Rµ1524 = −1

4

(
−h2

h2rv
2

+
h2r
h2v2

− v2

h2h2r
− 2

h2r

)
.

It is a tedious exercise in hyperbolic trigonometric identities to check that, when
h = cosh(r), hr = cosh(2r), and v = sinh(r), the above formulas reduce to the
constants in equations (3.5) through (3.8). Also, note that the first nine equations
above give the sectional curvatures of the coordinate planes, while the last six
equations are formulas for the nonzero mixed terms.

Finally, notice that the above curvature formulas contain all of the formulas that
arise in the analogous CHn\Hn for general n. In general, one can write the complex
hyperbolic metric cn as

cn = cosh2(r)hn−1 + cosh2(2r)dX2
n + sinh2(r)σn−1 + dr2
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and the corresponding warped-product metric as

µn = h2(r)hn−1 + h2r(r)dX
2
n + v2(r)σn−1 + dr2

where σn−1 is the round metric on Sn−1 and the vector field Xn is defined in
the same manner as X3. The curvature formulas for the base Hn are encoded in
the formulas for Rµ1212 and Rµ1313. All curvature formulas for the Sn−1 factor are
contained in the term Rµ4545. Note that neither of these cases contain any mixed
terms. Adding in the curvature formulas above of the form Rµ1414, Rµ3434, Rµ1425,
Rµ1245, and Rµ1524 gives all curvature formulas for h2(r)hn−1+h2r(r)dX

2
n+v2(r)σn−1

(this is where most of the mixed terms appear). And then all of the formulas above
containing a “6” give the rest of the curvature formulas for µn.

4. Curvature formulas for warped product metrics on CHn \ CHk

As mentioned in the Introduction, for simplicity we are going to restrict ourselves
to the case when n = 5 and k = 2. These are the smallest choices for n and k which
capture every formula for the curvature tensor in the general case, so nothing is
lost with this restriction (see the comments after Theorem 4.3 for more discussion).

4.1. Expressing the metric in CH5 in spherical coordinates about CH2.
Let c5 denote the complex hyperbolic metric on CH5 normalized to have constant
holomorphic sectional curvature −4. Since CH2 is a complete totally geodesic
submanifold of the negatively curved manifold CH5, there exists an orthogonal
projection map π : CH5 → CH2. This map π is a fiber bundle whose fibers are
totally geodesic 6-planes isometric to CH3.

For r > 0 let E(r) denote the r-neighborhood of CH2. Then E(r) is a real
hypersurface in CH5, and consequently we can decompose c5 as

c5 = (c5)r + dr2

where (c5)r is the induced Riemannian metric on E(r). Let πr : E(r) → CH2

denote the restriction of π to E(r). Note that πr is an S5-bundle whose fiber over
any point q ∈ CH2 is (topologically) the 5-sphere of radius r in the totally geodesic
6-plane π−1(q). The tangent bundle splits as an orthogonal sum V(r)⊕H(r) where
V(r) is tangent to the 5-sphere π−1r (q) and H(r) is the orthogonal complement to
V(r). Note that this copy of S5 does not have constant sectional curvature equal
to 1, but rather it is an example of a Berger sphere. This will be discussed further
below.

For r, s > 0 there exists a diffeomorphism φsr : E(s) → E(r) induced by the
geodesic flow along the totally geodesic 6-planes orthogonal to CH2. Fix p ∈ E(r)
arbitrary, let q = π(p) ∈ CH2, and let γ be the unit speed geodesic such that
γ(0) = q and γ(r) = p. In what follows, all computations are considered in the
tangent space TpE(r).

Note that V(r) is tangent to both E(r) and the totally geodesic 6-plane π−1(q).
Then since π−1(q) is preserved by the geodesic flow, we have that dφsr takes V(s)
to V(r). Consider the complex geodesic P = exp(span( ∂∂r , J

∂
∂r )). P intersects E(r)

orthogonally, and P ∩E(r) is isometric to a circle of radius r. Thus, since a complex
geodesic has curvature −4, there exists a suitable identification P ∼= S1 × (0,∞)
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where the metric c5 restricted to P can be written as

1

4
sinh2(2r)dθ2 + dr2

where dθ2 denotes the round metric on the unit circle S1. Note that the presence
of the “1/4” is to make the metric complete when extended to the core CH2.

Notice that ∂
∂θ is a vector field on the five sphere S5 mentioned above. More

generally, thinking of S5 as the unit sphere in C3 with respect to the usual Hermitian
metric, there is an obvious free action of the circle S1 on S5. The unit tangent vector
field with respect to this action corresponds to the vector field ∂

∂θ above. This action

fibers S5 over the complex projective plane CP2, and the Riemannian submersion
metric on this fiber bundle is an example of a Berger sphere (see [FJ94] pg. 59 for
more details). Let α(t) be a unit speed geodesic in S5 orthogonal to J ∂

∂r such that

α(0) = p. Then expp(α
′(0), ∂r) forms a totally real totally geodesic 2-plane in CH5.

Thus the curvature of this 2-plane is −1. Since the direction of α orthogonal to
J ∂
∂r was arbitrary, we can write the Riemannian metric (c5)r restricted to V(r) as

sinh2(r)p2 +
1

4
sinh2(2r)dθ2

where p2 denotes the complex projective metric on CP2.
Now let β(t) be any unit speed geodesic in CH2 such that β(0) = q. Then

Q = exp(span(β′(0), γ′(0))) is a totally real totally geodesic submanifold of CH5,
and thus K(β′, γ′) = −1. Therefore, the metric c5 restricted to Q can be written
as cosh2(r)dt2 + dr2. But since γ was arbitrary, we can write the metric on the
5-dimensional submanifold determined by CH2 and ∂

∂r as cosh2 c2+dr2. This leads
to the following.

Theorem 4.1. The complex hyperbolic manifold CH5 \ CH2 can be written as
E × (0,∞) where E ∼= CH2 × S5 equipped with the metric

(4.1) c5 = cosh2(r)c2 + sinh2(r)p2 +
1

4
sinh2(2r)dθ2 + dr2.

4.2. The warped product metric, orthonormal basis, and curvature for-
mulas in CH5 \CH2. For some positive, increasing real-valued functions h, v, vr :
(0,∞)→ R define the Riemannian metrics

γr,θ = h2(r)c2 + v2(r)p2

γr := γr,θ +
1

4
v2r(r)dθ2

and

(4.2) γ := γr + dr2.

Of course, γ = c5 when h = cosh(r), v = sinh(r), and vr = sinh(2r).
For the remainder of this Section, fix p = (q1, q̄, r) ∈ CH2× S5× (0,∞) ∼= CH5 \

CH2, and write q̄ ∈ S5 as (q2, θ) where q2 ∈ CP2 and θ ∈ S1. Let (X̌1, X̌2, X̌3, X̌4)
be an orthonormal collection of vector fields near q1 ∈ CH2 which satisfies:

(1) [X̌i, X̌j ]q1 = 0 for all 1 ≤ i, j ≤ 4.

(2) JX̌2|q1 = X̌1|q1 and JX̌4|q1 = X̌3|q1 .
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Define an analogous collection of vector fields (X̌5, X̌6, X̌7, X̌8) about q2 ∈ CP2 so
that JX̌6|q2 = X̌5|q2 , JX̌8|q2 = X̌7|q2 , and [X̌i, X̌j ]q2 = 0 for all 5 ≤ i, j ≤ 8.

Extend both collections to vector fields (X1, . . . , X8) near p. Lastly, let X9 = ∂
∂θ

and X10 = ∂
∂r .

Define an orthonormal basis {Yi}8i=1 with respect to γ by

Y1 =
1

h
X1 Y2 =

1

h
X2 Y3 =

1

h
X3 Y4 =

1

h
X4 Y5 =

1

v
X5

(4.3)

Y6 =
1

v
X6 Y7 =

1

v
X7 Y8 =

1

v
X8 Y9 =

1
1
2vr

X9 Y10 = X10.

Our goal is to compute formulas for the components of the (4, 0) curvature
tensor Rγ in terms of the warping functions h, v, and vr. As a first step, we
need to compute the components of the (4, 0) curvature tensor Rc5 of the complex
hyperbolic metric with respect to the orthonormal basis given above. Just as in
Section 3 we can do this with the help of formula (5.1). To use this formula note
that, by construction, we have that JY2 = Y1, JY4 = Y3, JY6 = Y5, JY8 = Y7, and
JY10 = Y9 at the point p (and again, when the metric is c5. So, when h = cosh(r),
v = sinh(r), and vr = sinh(2r)). Lastly, we use the notation

Rc5

ijkl := 〈Rc5(Yi, Yj)Yk, Yl〉c5 .

Then, up to the symmetries of the curvature tensor, the nonzero components of the
(4, 0) curvature tensor Rc5 are

−4 =Rc5
1212 = Rc5

3434 = Rc5
5656 = Rc5

7878 = Rc5
9,10,9,10(4.4)

−1 =Rc5
ijij where {i, j} 6∈ {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}(4.5)

−2 =Rc5

ijkl where (i, j) 6= (k, l) ∈ {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)}(4.6)

−1 =Rc5

ikjl where (i, j) 6= (k, l) ∈ {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)}(4.7)

1 =Rc5

iljk where (i, j) 6= (k, l) ∈ {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)}(4.8)

Let us quickly note that, since CP2 is dual to CH2, we have the following curva-
ture formulas for Rp2 :

4 = Rp2

5656 = Rp2

7878

1 = Rp2

5757 = Rp2

5858 = Rp2

6767 = Rp2

6868

2 = Rp2

5678 = 2Rp2

5768 = −2Rp2

5867.

In the above formulas, Rp2

ijkl := 〈Rp2(Yi, Yj)Yk, Yl〉p2 and with the abuse of notation

of Yi denoting the restriction of Yi to CP2.

4.3. Lie brackets and curvature formulas for γr,θ. The vector fields {Xi}10i=1

form an orthogonal frame near p which satisfies the following properties (at p):

(1) [Xi, Xj ] is tangent to the level surfaces of r for 1 ≤ i, j ≤ 9.

(2) [Xi, Xj ] is tangent to CH2 × S1 for 1 ≤ i, j ≤ 4, where S1 ∼= expp(J
∂
∂r ).

(3) [Xi, Xj ] is tangent to S5 for 5 ≤ i, j ≤ 8.

(4) [Xi, X10] = 0 since Xi is invariant under the flow of ∂
∂r for 1 ≤ i ≤ 9.

(5) [Xi, X9] = 0 since Xi is invariant under the flow of ∂
∂θ for 1 ≤ i ≤ 8.
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(6) [Xi, Xj ] = 0 for i ∈ {1, 2, 3, 4} and j ∈ {5, 6, 7, 8} since these vector fields
were defined via inclusion.

By the above points, and since [X̌i, X̌j ]p = 0 for all 1 ≤ i, j ≤ 8, there exist
structure constants cij such that [Xi, Xj ]p = cijX9. Note that cij = −cji. The
following Lemma provides the values for the structure constants.

Lemma 4.2. The values for the structure constants are c12 = c34 = c56 = c78 = 2,
and all other (independent) structure constants are equal to zero.

A quick note is that by “independent” structure constants we just mean that,
obviously, c21 = c43 = c65 = c87 = −2 6= 0.

Proof. All of the structure constants can be found by combining formula (5.7)
with the curvature formulas (4.6) through (4.8). To see that c12 = 2, we combine
equation (4.6) with (5.7) to obtain

4 = 2Rc5
10,9,1,2 = 0 + 0 + 〈[Y1, Y2], Y9〉c5

(
ln

[
1
4 sinh2(2r)

cosh2(r)

])′
=
c12 sinh(2r)

cosh2(r)

(
cosh(r)

sinh(r)

)
= 2c12.

An analogous argument shows that c34 = c56 = c78 = 2. To see that c13 = c14 =
c23 = c24 = c57 = c58 = c67 = c68 = 0 we use the same equations as above, but
note that the left hand side is now 0 instead of 4.

Lastly, to see that c15 = 0, note that

0 = Rc5
10,1,5,9 = 0 + 〈[Y5, Y1], Y9〉c5

(
ln

[ 1
2 sinh(2r)

sinh(r)

])′
+ 0

=
− 1

2c15 sinh(2r)

sinh(r) cosh(r)
(ln 2 cosh(r))′ = −c15 tanh(r).

The argument that the remaining structure constants are 0 is identical to the ar-
gument above. �

We now, for some fixed r and θ, compute the components of the (4, 0) curvature
tensor Rλr,θ

with respect to the orthonormal frame {Yi}8i=1. Since [Xi, Xj ] = 0
for i ∈ {1, 2, 3, 4} and j ∈ {5, 6, 7, 8}, the metric γr,θ is a product metric. Then
since the (4, 0) curvature tensor scales like the metric, up to the symmetries of the
curvature tensor the only nonzero components of Rγr,θ are

R
γr,θ
1212 = R

γr,θ
3434 = − 4

h2
R
γr,θ
1313 = R

γr,θ
1414 = R

γr,θ
2323 = R

γr,θ
2424 = − 1

h2

R
γr,θ
5656 = R

γr,θ
7878 =

4

v2
R
γr,θ
5757 = R

γr,θ
5858 = R

γr,θ
6767 = R

γr,θ
6868 =

1

v2

R
γr,θ
1234 = 2R

γr,θ
1324 = −2R

γr,θ
1423 = − 2

h2
R
γr,θ
5678 = 2R

γr,θ
5768 = −2R

γr,θ
5867 =

2

v2
.

In particular, note that mixed terms of the form R
γr,θ
1256 are 0.
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4.4. Curvature formulas for γr. Formulas (5.4) through (5.7) allow us to com-
pute the (4, 0) curvature tensor Rγ in terms of Rγr . We use a very different approach
from Section 3 to compute the nonzero components of Rγr . The background for
our current computations can be found in [Bes87] pg. 235-242. The metric γr is
a Riemannian submersion metric with (horizontal) base γr,θ and (vertical) fiber
1
4v

2
rdθ

2. So our approach is to compute the A and T tensors of γr, and to then use
Theorem 9.28 in [Bes87] to compute the components of Rγr .

First, the T tensor is identically zero since the vertical S1-fibers are totally
geodesic. The argument for this is identical to that in Section 6 of [Bel11].

We now compute the A tensor associated with γr. By ([Bes87] Prop. 9.24) we
have that

AX1X2 =
1

2
V [X1, X2] = X9.

Analogously, AX3X4 = AX5X6 = AX7X8 = X9 and AXiXj = 0 if {i, j} 6∈
{{1, 2}, {3, 4}, {5, 6}, {7, 8}}. Also, by ([Bes87] eqn. 9.21a) we have AX9

Xi = 0
for 1 ≤ i ≤ 8.

Now, by ([Bes87] eqn. 9.21d) we see that

〈AX1
X9, X2〉γr = −〈AX1

X2, X9〉γr = −1

4
v2r .

By this same equation we know that there are no other nonzero components of

AX1
X9. Therefore, AX1

X9 = − 1
4
v2r
h2X2. Analogously, we have that

AX2
X9 =

1

4

v2r
h2
X1 AX3

X9 = −1

4

v2r
h2
X4 AX4

X9 =
1

4

v2r
h2
X3

AX5X9 =− 1

4

v2r
v2
X6 AX6X9 =

1

4

v2r
v2
X5 AX7X9 = −1

4

v2r
v2
X8 AX8X9 =

1

4

v2r
v2
X7

We are now ready to use Theorem 9.28 from [Bes87] to compute the nonzero
components of Rγr . By (9.28c) we have that

〈Rγr (X1, X9)X1, X9〉γr = 〈AX1
X9, AX1

X9〉γr =
1

16

v4r
h2

and thus

(4.9) Rγr1919 =
4

h2v2r
〈Rγr (X1, X9)X1, X9〉γr =

v2r
4h4

.

Identically, Rγr2929 = Rγr3939 = Rγr4949 =
v2r
4h4 . Also, a completely analogous computa-

tion shows that

(4.10) Rγr5959 = Rγr6969 = Rγr7979 = Rγr8989 =
v2r
4v4

.

By (9.28f) we have that

〈Rγr (X1, X2)X1, X2〉γr = 〈Rγr,θ (X1, X2)X1, X2〉γr,θ − 3〈AX1X2, AX1X2〉γr

= 〈Rγr,θ (X1, X2)X1, X2〉γr,θ −
3

4
v2r

and thus

(4.11) Rγr1212 = R
γr,θ
1212 −

3v2r
4h4

= − 4

h2
− 3v2r

4h4
= Rγr3434.
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An identical argument shows that

Rγr5656 = Rγr7878 =
4

v2
− 3v2r

4v4
.(4.12)

Since AXiXj = 0 if {i, j} 6∈ {{1, 2}, {3, 4}, {5, 6}, {7, 8}} the above argument also
provides

(4.13) Rγrijij = R
γr,θ
ijij if {i, j} 6∈ {{1, 2}, {3, 4}, {5, 6}, {7, 8}}.

We now compute the mixed terms of Rγr .

〈Rγr (X1, X2)X3, X4〉γr = 〈Rγr,θ (X1, X2)X3, X4〉γr,θ − 2〈AX1X2, AX3X4〉γr

= 〈Rγr,θ (X1, X2)X3, X4〉γr,θ −
1

2
v2r

and therefore

(4.14) Rγr1234 = R
γr,θ
1234 −

v2r
2h4

= − 2

h2
− v2r

2h4
= 2Rγr1324 = −2Rγr1423.

Identically

(4.15) Rγr5678 = R
γr,θ
5678 −

v2r
2v4

=
2

v2
− v2r

2v4
= 2Rγr5768 = −2Rγr5867.

Now

〈Rγr (X1, X2)X5, X6〉γr = 〈Rγr,θ (X1, X2)X5, X6〉γr,θ − 2〈AX1X2, AX5X6〉γr = −1

2
v2r

and hence

(4.16) Rγr1256 = − v2r
2h2v2

= Rγr1278 = Rγr3456 = Rγr3478.

Finally, the same argument yields

Rγr1526 = Rγr1728 = Rγr3546 = Rγr3748 = − v2r
4h4v4

(4.17)

Rγr1625 = Rγr1827 = Rγr3645 = Rγr3847 =
v2r

4h4v4
.(4.18)

4.5. Curvature formulas for γ. Combining equations (4.9) through (4.18) with
formulas (5.4) through (5.7) proves the following Theorem.

Theorem 4.3. In terms of the basis given in equation (4.3), the only independent
nonzero components of the (4, 0) curvature tensor Rγ are given by the following
formulas, where i ∈ {1, 2, 3, 4}, k ∈ {5, 6, 7, 8}, (i, j) ∈ {(1, 2), (3, 4)}, and (k, l) ∈
{(5, 6), (7, 8)}.

Rγ1212 = Rγ3434 = −
(
h′

h

)2

− 4

h2
− 3v2r

4h4
Rγ5656 = Rγ7878 = −

(
v′

v

)2

+
4

v2
− 3v2r

4v4

Rγi9i9 = −h
′v′r
hvr

+
v2r

4h4
Rγk9k9 = −v

′v′r
vvr

+
v2r
4v4

Rγikik = −h
′v′

hv

Rγ1313 = Rγ1414 = Rγ2323 = Rγ2424 = −
(
h′

h

)2

− 1

h2
(continued on next page)
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Rγ5757 = Rγ5858 = Rγ6767 = Rγ6868 = −
(
v′

v

)2

+
1

v2

Rγi,10,i,10 = −h
′′

h
Rγk,10,k,10 = −v

′′

v
Rγ9,10,9,10 = −v

′′
r

vr

Rγ1234 = 2Rγ1324 = −2Rγ1423 = − 2

h2
− v2r

2h4

Rγ5678 = 2Rγ5768 = −2Rγ5867 =
2

v2
− v2r

2v4

Rγijkl = 2Rγikjl = −2Rγiljk = − v2r
2h2v2

Rγi,j,9,10 = 2Rγi,9,j,10 = −2Rγi,10,j,9 = − vr
h2

(
ln
vr
h

)′
Rγk,l,9,10 = 2Rγk,9,l,10 = −2Rγk,10,l,9 = −vr

v2

(
ln
vr
v

)′
.

Unlike Section 3, this time is is a much simpler exercise in hyperbolic trigono-
metric identities to check that, when h = cosh(r), v = sinh(r), and vr = sinh(2r),
the above formulas reduce to the constants in equations (4.4) through (4.8).

Finally, notice that the above curvature formulas contain all of the formulas that
arise in the analogous CHn \ CHk for general n and k. In general, one can write
the complex hyperbolic metric cn as

cn = cosh2(r)ck + sinh2(r)pn−k−1 +
1

4
sinh2(2r)dθ2 + dr2

and the corresponding warped-product metric as

γn = h2(r)ck + v2(r)pn−k−1 +
1

4
v2r(r)dθ2 + dr2

where pn−k−1 is the complex projective metric on CPn−k−1. The curvature formu-
las for the base CHk are encoded in the formulas for Rγ1212, R

γ
1313, and Rγ1234. The

analogous formulas for CPn−k−1 are contained in Rγ5656, R
γ
5757, and Rγ5678. Adding

in the curvature formulas above of the form Rγijij and Rγijkl gives all curvature for-

mulas for h2(r)ck + v2(r)pn−k−1. And then all of the formulas above containing
either a “9” or a “10” give the rest of the curvature formulas for γn.

4.6. The exceptional case CHn \CHn−2. Notice that, when k = n−2, there are
no sectional curvatures of γ of the form

−
(
v′

v

)2

+
1

v

2

.

That is because we can write CHn \CHn−2 ∼= CHn−2 × S3 × (0,∞), and CP1 (the
base of the Hopf fibration) has constant holomorphic curvature 4. So the purpose
of this subsection is to prove the following:

Lemma 4.4. There do not exist functions h, v, and vr that, when inserted into
equation (4.2), yield a complete finite volume Riemannian metric on CHn \CHn−2
with nonpositive sectional curvature.

Proof. Since we are removing a copy of CHn−2 from CHn, for the metric to be
complete we need to define h, v, and vr on (−∞,∞). These functions need to be



18 BARRY MINEMYER

positive for the metric to be Riemannian, and they need to be non-decreasing for
there to be any chance of nonpositive curvature. For any hope of finite volume, we
need all of the following limits to hold:

lim
r→−∞

h, h′, v, v′, vr, v
′
r = 0.

Now, from the formula for the R5656 term in Theorem 4.3 we must have that

4− (v′)2

v2
− 3v2r

4v4
≤ 0(4.19)

⇐⇒ 16− 4(v′)2

3
≤
(vr
v

)2
.

In particular, we see that a necessary requirement for nonpositive curvature is that

(4.20) lim
r→−∞

vr
v
> 1.

From the formula for the Rk9k9 term in Theorem 4.3 we must have that

−v
′v′r
vvr

+
v2r
4v4
≤ 0

=⇒ 3v2r
4v4
≤ 3v′v′r

vvr
.(4.21)

Comparing equations (4.19) and (4.21), we see that

4− (v′)2

v2
≤ 3v′v′r

vvr
=⇒ 4− (v′)2 ≤ (3v′v′r) ·

v

vr

is also a necessary requirement for nonpositive curvature. But as r → −∞, we
know that 4− (v′)2 → 4 and 3v′v′r → 0. Thus, we must have that

(4.22) lim
r→−∞

v

vr
=∞ =⇒ lim

r→−∞

vr
v

= 0.

Equations (4.20) and (4.22) provide a contradiction, proving the Lemma.
�

5. Preliminaries

5.1. Formula for the curvature tensor of CHn in terms of the complex
structure J . The components of the (4,0) curvature tensor of the complex hyper-
bolic metric g can be expressed in terms of g and the complex structure J . The
following formula can be found in [KN96] or in Section 5 of [Bel11] (recall Remark
1.2 from the Introduction). In this formula X,Y, Z, and W are arbitrary vector
fields.

〈Rg(X,Y )Z,W 〉g = 〈X,W 〉g〈Y, Z〉g − 〈X,Z〉g〈Y,W 〉g(5.1)

+ 〈X, JW 〉g〈Y, JZ〉g − 〈X, JZ〉g〈Y, JW 〉g + 2〈X, JY 〉g〈W,JZ〉g.
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5.2. Koszul’s formula for the Levi-Civita connection. LetX,Y, and Z denote
vector fields on a Riemannian manifold (M, g). The following is the well-known
“Koszul formula” for the values of the Levi-Civita connection ∇ (which can be
found on pg. 55 of [doC92])

〈∇YX,Z〉g =
1

2
(X〈Y, Z〉g + Y 〈Z,X〉g − Z〈X,Y 〉g(5.2)

− 〈[X,Z], Y 〉g − 〈[Y,Z], X〉g − 〈[X,Y ], Z〉g).
In this paper we will usually be considering an orthonormal frame (Yi). In this
setting we know that 〈Yi, Yj〉g = δij , where δij denotes Kronecker’s delta. Therefore
the first three terms on the right hand side of formula (5.2) are all zero. Thus, in
an orthonormal frame, formula (5.2) reduces to

(5.3) 〈∇YX,Z〉g = −1

2
(〈[X,Z], Y 〉g + 〈[Y,Z], X〉g + 〈[X,Y ], Z〉g) .

5.3. General curvature formulas for warped product metrics. The curva-
ture formulas below, which were worked out by Belegradek in [Bel12] and stated
in Appendix B of [Bel11], apply to metrics of the form g = gr + dr2 on manifolds
of the form E × I where I is an open interval and E is a manifold. The formulas
are true provided that for each point q ∈ E there exists a local frame {Xi} on a
neighborhood Uq in E which is gr-orthogonal for each r. Such a family of metrics
(E, gr) is called simultaneously diagonalizable. Let

hi(r) :=
√
gr(Xi, Xi).

Then the local frame {Yi} defined by

Yi =
1

hi
Xi

is a gr-orthonormal frame on Uq for any value of r. We then have the following
formulas for the (4,0) curvature tensor Rg in terms of the (4,0) curvature tensor
Rgr , the collection {hi}, and the Lie brackets [Yi, Yj ]. Note that 〈, 〉 is used to

denote the metric g and ∂r = ∂
∂r .

〈Rg(Yi, Yj)Yi, Yj〉 = 〈Rgr (Yi, Yj)Yi, Yj〉 −
h′ih
′
j

hihj
(5.4)

〈Rg(Yi, Yj)Yk, Yl〉 = 〈Rgr (Yi, Yj)Yk, Yl〉 if {i, j} 6= {k, l}(5.5)

〈Rg(Yi, ∂r)Yi, ∂r〉 = −h
′′
i

hi
〈Rg(Yi, ∂r)Yj , ∂r〉 = 0 if i 6= j(5.6)

2〈R (∂r, Yi)Yj , Yk〉 = 〈[Yi, Yk], Yj〉
(

ln
hj
hk

)′
+ 〈[Yj , Yi], Yk〉

(
ln
hk
hj

)′
(5.7)

+ 〈[Yj , Yk], Yi〉
(

ln
h2i
hjhk

)′
.

5.4. The Nijenhuis Tensor. In Sections 3 and 4 we will be explicitly dealing with
CHn. Since the almost complex structure on CHn is integrable, we have that the
Nijenhuis Tensor is identically equal to zero. Explicitly, for any vector fields X and
Y on CHn, we have that

(5.8) 0 = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

where J denotes the complex structure on CHn.
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6. Computations for the Lie brackets for CH3 \H3

The whole purpose of this Section is to prove Theorem 3.2.

Proof of Theorem 3.2. There are 5× 10 = 50 structure constants to compute from
equation (3.9). From equation (3.10) we know that c445 = 0 and c545 = − cot(θ),
leaving 48 unknown structure constants.

We can combine formula (5.7) with equations (3.5) through (3.8) to compute
many of the constants. As a first example, note that

0 = 2Rc3
6131 = 0 + 2〈[Y3, Y1], Y1〉c3

(
ln

h

hr

)′
= − 2c113

cosh(2r)

(
ln

cosh(r)

cosh(2r)

)′

and thus c113 = 0. We can analogously show

0 = c114 = c115 = c223 = c224 = c225 = c313 = c323

= c334 = c335 = c414 = c424 = c434 = c515 = c525 = c535.

This narrows us down to 32 unknown constants.
Continuing with the same formula and equations, we have that

0 = 2Rc3
6145 = 0 + 0 + 〈[Y4, Y5], Y1〉c3

(
ln

cosh2(r)

sinh2(r)

)′
=
c145h

v2

(
ln

cosh2(r)

sinh2(r)

)′
and therefore c145 = 0. Analogously, c245 = c345 = c312 = c412 = c512 = 0. This reduces
us to 26 unknowns. But we can also use the same curvature formulas here, but
with the indices permuted, to derive some simple equations relating some of the
constants. For example,

0 = Rc3
6415 = 0 + 〈[Y1, Y4], Y5〉c3

(
ln

sinh(r)

cosh(r)

)′
+ 〈[Y1, Y5], Y4〉c3

(
ln

sinh(r)

cosh(r)

)′
=

1

h
(c514 + c415)

(
ln

sinh(r)

cosh(r)

)′
and thus c514 = −c415. Analogously, we have the identities

c524 = −c425 c534 = −c435 c213 = −c123
c214 = −c124 c215 = −c125.
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Combining formula (5.7) with the fact that 2Rc3
6413 = 2 gives that

2 = 〈[Y4, Y3], Y1〉c3

(
ln

h

hr

)′
+ 〈[Y1, Y4], Y3〉c3

(
ln
hr
h

)′
+ 〈[Y1, Y3], Y4〉c3

(
ln

v2

hhr

)′
= −c

1
34h

hrv

(
ln

h

hr

)′
+
c314hr
hv

(
ln
hr
h

)′
+
c413v

hhr

(
ln

v2

hhr

)′
=

(
−c134 cosh(r)

cosh(2r) sinh(r)
− c314 cosh(2r)

cosh(r) sinh(r)

)
(tanh(r)− 2 tanh(2r))

+
c413 sinh(r)

cosh(r) cosh(2r)
(2 coth(r)− tanh(r)− 2 tanh(2r)) .

Now one consults equation (5.9) in [Min17] to see that the solutions to this equation
are

c413 = 1 c314 = 1 c134 = −1.

In exactly the same manner we can use Rc3
6253 with equation (5.9) in [Min17] to

compute

c523 = 1 c325 = 1 c235 = −1.

This leaves 20 unknowns together with the 6 identities listed above. Now, using
Rc3

6135 we have that

0 = 〈[Y1, Y5], Y3〉c3

(
ln
hr
v

)′
+ 〈[Y3, Y1], Y5〉c3

(
ln

v

hr

)′
+ 〈[Y3, Y5], Y1〉c3

(
ln

h2

hrv

)′
=

(
c315 cosh(2r)

cosh(r) sinh(r)
+

c513 sinh(r)

cosh(r) cosh(2r)

)
(2 tanh(2r)− coth(r))

+
c135 cosh(r)

cosh(2r) sinh(r)
(2 tanh(r)− 2 tanh(2r)− coth(r)) .

One can check that the only solution to this equation (which holds for all values of
r) is c513 = c315 = c135 = 0. Analogously, we can use Rc3

6234 to show that c423 = c324 =
c234 = 0. These equations reduce us to 14 unknowns.

This is as much information as we can gain from formula (5.7). So we next turn
to the Nijenhuis Tensor (5.8). First applying this to (Y1, Y2), we have

0 = [Y1, Y2]− J [Y4, Y2]− J [Y1, Y5]− [Y4, Y5]

=
1

h
(c112Y1 + c212Y2) + J

(
c124
v
Y1 +

c524
h
Y5

)
− J

(
c215
v
Y2 +

c415
h
Y4

)
+

1

v
cot(θ)Y5

=
1

h

(
c112 − c415

)
Y1 +

1

h
(c212 + c524)Y2 −

c124
v
Y4 +

1

v
(c215 + cot(θ))Y5.

Therefore, we have that

c124 = 0 = −c214 c215 = − cot(θ) = −c125 c112 = c415 = −c514 c212 = −c524.

We can also apply the Nijenhuis tensor to the pairs (Y1, Y3) and (Y2, Y3), but these
are much less productive. These applications only give us the pair of identities

c213 = −c534 c123 = −c435
the former of which comes from the pair (Y1, Y3), and the latter from the pair
(Y2, Y3).
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At this stage, we have reduced our 10 Lie brackets as follows:

[X1, X2] = c112X1 + c212X2 [X1, X3] = c213X2 +X4

[X1, X4] = X3 − c112X5 [X1, X5] = − cot(θ)X2 + c112X4

[X2, X3] = −c213X1 +X5 [X2, X4] = −c212X5

[X2, X5] = cot(θ)X1 +X3 + c212X4 [X3, X4] = −X1 − c213X5

[X3, X5] = −X2 + c213X4 [X4, X5] = − cot(θ)X5.

Notice that, using the known identities, we can reduce the system to three un-
knowns: c112, c

2
12, and c213. All that is left is to show that c112 = ±1, c212 = 0, and

c213 = ∓ cot(θ).
At this point we have exhausted all of our “easy” options. The only way to obtain

new relationships between the structure constants is to compute new components
of Rc3 . To do this, one needs to first use equation (5.2) with the values for the Lie
brackets given above to compute the Levi-Civita connection ∇ compatible with c3.
Of course, these formulas will contain the constants c112, c

2
12, and c213. But when

the correct values for these constants are inserted, these formulas will reduce to
those of Theorem 3.3. Then once one has computed ∇, they can use those values
to compute the components of Rc3 .

The first component that will be useful is Rc3
1212:

−1 =Rc3
1212 = 〈∇Y2

∇Y1
Y1 −∇Y1

∇Y2
Y1 +∇[Y1,Y2]Y1, Y2〉c3

=〈∇Y2

(
−c112

cosh(r)
Y2 − tanh(r)Y6

)
−∇Y1

(
−c212

cosh(r)
Y2

)
+

c112
cosh(r)

∇Y1
Y1 +

c212
cosh(r)

∇Y2
Y1, Y1〉c3

=− sinh2(r)

cosh2(r)
− ((c112)2 + (c212)2)

cosh2(r)

=⇒ (c112)2 + (c212)2 = 1.

The next component that we use is Rc3
1512. We will skip the details and just note

that

0 = Rc3
1512 =

c212
sinh(r) cosh(r)

· cot(θ)

which implies that c212 = 0. Combining this with the first equation shows that
c112 = ±1. Finally, to compute c213 we use Rc3

1412:

0 = Rc3
1412 =

−c213
sinh(r) cosh(r)

− c112
sinh(r) cosh(r)

· cot(θ).

Therefore

c213 = −(±1) cot(θ) = ∓ cot(θ).

�
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