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Abstract. We consider finite volume manifold pairs (M,N) modeled on (CHn,CHn−2)
and prove the existence of a special Riemannian metric g on M \N . This met-

ric g is complete, has finite volume, and is negatively curved when restricted

to a specific nonintegrable codimension one distribution D . The existence of
this metric g shows that some recent results in [AP16] cannot, in some sense,

be extended to distributions on manifolds.

1. Introduction

Let CHn denote (complex) n-dimensional complex hyperbolic space. If M is a
Riemannian manifold and N a totally geodesic submanifold of M , we say that the
pair (M,N) is modeled on (CHn,CHk) if there exist lattices Γ ⊂ Isom(CHn) and
Λ ⊂ Isom(CHk) such that M = CHn/Γ, N = CHk/Λ, and Λ < Γ. We also allow
for the possibility that N is disconnected. That is, we allow for multiple lattices
Λ < Γ which correspond to different (disjoint) copies of CHk ⊂ CHn. The main
result of this paper is the existence of a special metric on M \N when k = n − 2
(so, when N has real codimension 4).

Theorem 1.1. Suppose (M,N) is modeled on (CHn,CHn−2) with M having finite
volume. Then there exists a Riemannian metric g on M \N which is complete, has
finite volume, and such that M admits a codimension one (nonintegrable) distribu-
tion D which satisfies

Kg(σ) < −δ
for all 2-planes σ ⊆ D and for some δ > 0.

In the above Theorem, Kg denotes the sectional curvature with respect to g.
To motivate Theorem 1.1, consider the case when n = 3, M = CH3, and N is a

single copy of CH1 (and for simplicity we ignore the assumption of finite volume).
Here, M \N is a six dimensional manifold diffeomorphic to R2 × S3 × (0,∞), and
D is a five dimensional distribution. A recent result of Avramidi and Phan [AP16]
shows that the ends of a complete, nonpositively curved five dimensional manifold
with finite volume must be aspherical. From the construction of the distribution
D it is clear that, if it were integrable, the ends of the corresponding submanifold
would have nontrivial Π2 and thus would not be aspherical (thinking of the copy of
S3 as the total space of the Hopf fibration over S2, the one direction not included
in D is the direction tangent to the S1 fiber at each point of the base CP1). So
Thereom 1.1 shows that the results of [AP16] cannot, in some sense, be extended
to include nonintegrable distributions in manifolds.
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The proof of Theorem 1.1 is technical, but some of the methods will likely be
more useful than the result. All calculations are performed in the universal cover
(CHn,CHn−2), but will clearly “descend” to the pair (M,N). To prove Theo-
rem 1.1 we first write the metric in CHn in spherical coordinates about a copy of
CHn−2 (Theorem 2.1). We then consider the corresponding warped-product metric
γ (equation (2.2)) and calculate formulas for the components of the (4, 0) sectional
curvature tensor of γ (Theorem 2.2). All of this is contained in Section 2, and is
really just a special case of some of the results in [Min18]. But we include the
necessary details here for the sake of exposition.

In Section 3 we discuss which direction we omit for the distribution D and de-
velop general curvature formulas to prove Theorem 1.1 (equations (3.3) and (3.4)).
Finally, in Section 4 we prove the existence of warping functions which lead to a
complete, finite volume metric whose sectional curvature is bounded above by a
negative constant when restricted to 2-planes contained in D . Some of the meth-
ods used in this argument are similar to those used in [GT87], [Bel12], [Bel11], and
[Min17].

Remark 1.2. In this paper we scale the complex hyperbolic metric to have sectional
curvatures in the interval [−4,−1]. We also follow the notation of [doC92] and use
the following formula for the curvature tensor R of g

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z.

This coincides with the notation used in [Min18], but varies from that used in some
of the references in the preceding paragraph.

2. Curvature formulas for warped product metrics on CHn \ CHn−2

In this Section we quickly describe how to write the metric in CHn in spherical
coordinates about a totally geodesic copy of CHn−2. We then describe the cor-
responding warped product metric, and state the formulas for the components of
the (4, 0) sectional curvature tensor with respect to this metric. All calculations
for the formulas found in this Section can be found in [Min18] and, in particular,
all formulas in this Section are a special case of those worked out in Section 4 of
[Min18].

2.1. Expressing the metric in CHn in spherical coordinates about CHn−2.
Let cn denote the complex hyperbolic metric on CHn normalized to have constant
holomorphic sectional curvature −4. Since CHn−2 is a complete totally geodesic
submanifold of the negatively curved manifold CHn, there exists an orthogonal
projection map π : CHn → CHn−2. This map π is a fiber bundle whose fibers are
totally geodesic 4-planes isometric to CH2.

For r > 0 let E(r) denote the r-neighborhood of CHn−2. Then E(r) is a real
hypersurface in CHn, and consequently we can decompose cn as

cn = (cn)r + dr2

where (cn)r is the induced Riemannian metric on E(r). Let πr : E(r) → CHn−2
denote the restriction of π to E(r). Note that πr is an S3-bundle whose fiber over any
point q ∈ CHn−2 is (topologically) the 3-sphere of radius r in the totally geodesic
4-plane π−1(q). The tangent bundle splits as an orthogonal sum V(r)⊕H(r) where
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V(r) is tangent to the 3-sphere π−1r (q) and H(r) is the orthogonal complement to
V(r).

For r, s > 0 there exists a diffeomorphism φsr : E(s) → E(r) induced by the
geodesic flow along the totally geodesic 4-planes orthogonal to CHn−2. Fix p ∈ E(r)
arbitrary, let q = π(p) ∈ CHn−2, and let γ be the unit speed geodesic such that
γ(0) = q and γ(r) = p. In what follows, all computations are considered in the
tangent space TpE(r).

Note that V(r) is tangent to both E(r) and the totally geodesic 4-plane π−1(q).
Then since π−1(q) is preserved by the geodesic flow, we have that dφsr takes V(s)
to V(r). Consider the complex geodesic P = exp(span( ∂∂r , J

∂
∂r )), where J denotes

the complex structure on CHn. P intersects E(r) orthogonally, and P ∩ E(r) is
isometric to a circle of radius r. Thus, since a complex geodesic has curvature −4,
there exists a suitable identification P ∼= S1× (0,∞) where the metric c5 restricted
to P can be written as

1

4
sinh2(2r)dθ2 + dr2

where dθ2 denotes the round metric on the unit circle S1. Note that the presence
of the “1/4” is to make the metric complete when extended to the core CH2.

Notice that ∂
∂θ is a vector field on the three sphere S3 mentioned above. More

generally, thinking of S3 as the unit sphere in C2 with respect to the usual Hermitian
metric, there is an obvious free action of the circle S1 on S3. The unit tangent vector
field with respect to this action corresponds to the vector field ∂

∂θ above. This action

fibers S3 over the complex projective line CP1 (which, here, is the Hopf fibration),
and the Riemannian submersion metric on this fiber bundle is an example of a
Berger sphere. Let α(t) be a unit speed geodesic in CP1 such that α(0) = p.
Then expp(α

′(0), ∂∂r ) forms a totally real totally geodesic 2-plane in CHn. Thus
the curvature of this 2-plane is −1. Since the direction of α was arbitrary, we can
write the Riemannian metric (cn)r restricted to V(r) as

sinh2(r)p1 +
1

4
sinh2(2r)dθ2

where p1 denotes the complex projective metric on CP1.
Now let β(t) be any unit speed geodesic in CHn−2 such that β(0) = q. Then

Q = exp(span(β′(0), γ′(0))) is a totally real totally geodesic submanifold of CHn,
and thus K(β′, γ′) = −1. Therefore, the metric cn restricted to Q can be written
as cosh2(r)dt2 + dr2. But since γ was arbitrary, we can write the metric on the
(2n-3)-dimensional submanifold determined by CHn−2 and ∂

∂r as cosh2 cn−2 + dr2.
This leads to the following (compare to Theorem 2.1 of [Min18]).

Theorem 2.1. The complex hyperbolic manifold CHn \ CHn−2 can be written as
E × (0,∞), where E ∼= CHn−2 × S3 equipped with the metric

(2.1) cn = cosh2(r)cn−2 + sinh2(r)p1 +
1

4
sinh2(2r)dθ2 + dr2.

2.2. The warped product metric, orthonormal basis, and curvature for-
mulas in CHn\CHn−2. For some positive, increasing real-valued functions h, v, vr :
(0,∞)→ R define the Riemannian metric

(2.2) γ := h2(r)cn−2 + v2(r)p1 +
1

4
v2r(r)dθ2 + dr2.
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Of course, this is just the warped product metric associated to equation (2.1), and
so γ = cn when h = cosh(r), v = sinh(r), and vr = sinh(2r).

For the remainder of this Section, fix p = (q1, q̄, r) ∈ CHn−2 × S3 × (0,∞) ∼=
CHn \CHn−2. Also, write q̄ = (q2, θ) where q2 ∈ CP1 and θ ∈ S1 (thinking of S3 as
the total space of the Hopf fibration). Let (X̌1, X̌2, . . . , X̌2n−4) be an orthonormal
collection of vector fields near q1 ∈ CHn−2 which satisfies:

(1) [X̌i, X̌j ]q1 = 0 for all 1 ≤ i, j ≤ 2n− 4.

(2) JX̌i+1|q1 = X̌i|q1 for all 2 ≤ i ≤ 2n− 4 and i even.

Define an analogous collection of vector fields (X̌2n−3, X̌2n−2) about q2 ∈ CP1

so that JX̌2n−2|q2 = X̌2n−3|q2 and [X̌2n−2, X̌2n−3]q2 = 0. Extend both collections

to vector fields (X1, . . . , X2n−2) near p. Lastly, let X2n−1 = ∂
∂θ and X2n = ∂

∂r .

Define an orthonormal basis {Yi}2ni=1 with respect to γ by

Yi =
1

h
Xi (for 1 ≤ i ≤ 2n− 4) Yj =

1

v
Xj (for j = 2n− 3, 2n− 2)(2.3)

Y2n−1 =
1

1
2vr

X2n−1 Y2n = X2n.

We then have the following Theorem which states all nonzero terms of the (4, 0)
curvature tensor Rγ (up to the symmetries of the curvature tensor) with respect to
the basis (Yi) (this is a special case of Theorem 2.3 of [Min18]).

Theorem 2.2. In terms of the basis given in equation (2.3), the only independent
nonzero components of the (4, 0) curvature tensor Rγ are given by the following
formulas. In these formulas: i, i′ ∈ {1, . . . , 2n − 4} with |JXi| 6= |JXi′ |, k ∈
{2n−3, 2n−2}, (i, j) 6= (i′, j′) ∈ {(1, 2), . . . , (2n−5, 2n−4)}, (k, l) = (2n−3, 2n−2),
and Rγabcd := 〈Rγ(Ya, Yb)Yc, Yd〉γ .

Rγijij = −
(
h′

h

)2

− 4

h2
− 3v2r

4h4
Rγklkl = −

(
v′

v

)2

+
4

v2
− 3v2r

4v4

Rγii′ii′ = −
(
h′

h

)2

− 1

h2
Rγikik = −h

′v′

hv

Rγi,2n−1,i,2n−1 = −h
′v′r
hvr

+
v2r
4h4

Rγk,2n−1,k,2n−1 = −v
′v′r
vvr

+
v2r
4v4

Rγi,2n,i,2n = −h
′′

h
Rγk,2n,k,2n = −v

′′

v
Rγ2n−1,2n,2n−1,2n = −v

′′
r

vr

Rγiji′j′ = 2Rγii′jj′ = −2Rγij′ji′ = − 2

h2
− v2r

2h4

Rγijkl = 2Rγikjl = −2Rγiljk = − v2r
2h2v2

Rγi,j,2n−1,2n = 2Rγi,2n−1,j,2n = −2Rγi,2n,j,2n−1 = − vr
h2

(
ln
vr
h

)′
Rγk,l,2n−1,2n = 2Rγk,2n−1,l,2n = −2Rγk,2n,l,2n−1 = −vr

v2

(
ln
vr
v

)′
.
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3. Computing sectional curvatures of generic 2-planes

The negatively curved codimension one distribution D from Theorem 1.1 is the
distribution orthogonal to ∂

∂θ (or equivalently Y2n−1). Let p = (q1, q2, θ, r) as in

the previous Section. Note that D is not integrable, since [X2n−3, X2n−2] = 2 ∂
∂θ

(see Lemma 4.2 of [Min18]). To prove that the sectional curvature of D is bounded
above by a negative constant, it is enough to consider the “generic” case of 2-
planes σ ⊂ TpCHn whose projection onto both Tq1CHn−2 and Tq2CP1 is at least
1-dimensional.

To simplify our curvature calculations, we choose the frame (Yi) depending on
the position of σ. The homeomorphism CHn \CHn−2 ∼= CHn−2×S3× (0,∞) gives
a natural identification of Dp with Tq1CHn−2×Tq2CP1×R. Since the Tq1CHn−2×
Tq2CP1 component of Dp has codimension one, σ contains a unit vector A which
is contained in this component. Define the projections π1 : Dp → Tq1CHn−2 and

π2 : Dp → Tq2CP1. Let X̌1 ∈ Tq1CHn−2 and X̌5 ∈ Tq2CP1 be unit vectors parallel to

π1(A) and π2(A), respectively. Next, define X̌2 ∈ Tq1CHn−2 so that JX̌2 = X̌1 and

X̌6 ∈ Tq2CP1 so that JX̌6 = X̌5. Finally, if necessary, we choose X̌3 ∈ Tq1CHn−2
so that (X̌1, X̌2, X̌3) is an orthonormal collection of vectors whose span contains
π1(σ).

As in Section 2, extend these vectors to vector fields near q1 and q2 with (by
abusing notation) the same name, and then extend them to vector fields Xi near
p. Let Yi = (1/h)Xi for i = 1, 2, 3, Yj = (1/v)Xj for j = 5, 6, and Y8 = ∂

∂r (where

we omit Y7 since D omits ∂
∂θ ). By construction, A can be written as a linear

combination of X1 and X5. If B ∈ σ is a unit vector orthogonal to A, then (A,B)
is an orthonormal basis of σ which can be written as

A = a1Y1 + a5Y5 B = b1Y1 + b2Y2 + b3Y3 + b5Y5 + b6Y6 + b8Y8

where

a21 + a25 = 1 = b21 + b22 + b23 + b25 + b26 + b28

and

a1b1 + a5b5 = 0.

We then compute

Kγ(σ) = 〈Rγ(A,B)A,B〉γ
= a21b

2
2R

γ
1212 + a21b

2
3R

γ
1313 + a21b

2
6R

γ
1616 + a21b

2
8R

γ
1818 + (a1b5 − a5b1)2Rγ1515(3.1)

+ a25b
2
2R

γ
2525 + a25b

2
3R

γ
3535 + a25b

2
6R

γ
5656 + a25b

2
8R

γ
5858

+ 2a1a5b2b6R
γ
1256 − 2a1a5b2b6R

γ
1625.

Note that by Theorem 2.2 we know that

(3.2) 2a1a5b2b6R
γ
1256 − 2a1a5b2b6R

γ
1625 = 3a1a5b2b6R

γ
1256.
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We then combine equation (3.2) and Theorem 2.2 with equation (3.1) to obtain the
following.

Kγ(σ) = a21b
2
2

[
−
(
h′

h

)2

− 4

h2
− 3v2r

4h4

]
+ a21b

2
3

[
−
(
h′

h

)2

− 1

h2

]
+ a21b

2
8

(
−h
′′

h

)
+
[
a21b

2
6 + (a1b5 − a5b1)2 + a25b

2
2 + a25b

2
3

](
−h
′v′

hv

)
+ a25b

2
8

(
−v
′′

v

)
(3.3)

+ a25b
2
6

[
−
(
v′

v

)2

+
4

v2
− 3v2r

4v4

]
+ 3a1b2a5b6

(
−v2r

2h2v2

)
.

Note that only the 6th and 7th terms (the last two terms) of equation (3.3) are
capable of being positive. One method to ensure that the 6th term is negative is
to choose v sufficiently small (independent of vr). One can then deal with the 7th
(mixed) term by ensuring that the 1st and 6th terms are sufficiently negative, since
these two terms (combined) contain the same coefficients as the mixed term. In
particular, any contribution from coefficients other than a1, a5, b2, and b6 will only
ever make the curvature more negative. So the “worst case” situation for us is when
b1 = b3 = b5 = b8 = 0. In this case, equation (3.3) reduces to

Kγ(σ) = a21b
2
2

[
−
(
h′

h

)2

− 4

h2
− 3v2r

4h4

]
+ (a21b

2
6 + a25b

2
2)

(
−h
′v′

hv

)
(3.4)

+ a25b
2
6

[
−
(
v′

v

)2

+
4

v2
− 3v2r

4v4

]
+ 3a1b2a5b6

(
−v2r

2h2v2

)
.

This is the equation that we will use in the next section when proving that g,
restricted to D , has negative sectional curvature.

4. Constructing the metric in Theorem 1.1

In this Section we develop warping functions for h(r), v(r), and vr(r), defined
for r ∈ (−∞,∞), so that the resulting metric g (where g := γ from Theorem
2.2) satisfies the conditions of Theorem 1.1. The domain of (−∞,∞) turns each
component of N into a “cusp” of M , which is to ensure that g is complete. An
outline of how we define these functions is as follows.

We begin by letting ε > 0 be much smaller than the normal injectivity radius of
N . We also let δ > 0 be a small positive constant and a < 0 be a large (in absolute
value) negative constant. On the region (−∞, a) we define

(4.1) h = δer v =
1

3
εer vr = εe

r
2 .

On the region
(
a, 13ε

)
we slowly warp h from δer to cosh(r) while keeping v = 1

3εe
r

and vr = εe
r
2 . We then “bend” v to sinh(r) in a small neighborhood of r = 1

3ε.

These functions remain as they are on the interval
(
1
3ε,

1
2ε
)
. In a small neighborhood

of r = 1
2ε we then “bend” vr from εe

r
2 to sinh(2r). Finally, for r > ε we have

h = cosh(r), v = sinh(r), and vr = sinh(2r) so that g agrees with the complex
hyperbolic metric on this region.
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A quick remark before we get into some more details is that the definitions for
our warping functions for the interval (−∞, a) in equation (4.1) guarantee that g
still has finite volume.

In the following Subsections we will prove that g has negative curvature in each
of the intervals (−∞, a),

(
a, 13ε

)
, and

(
1
3ε,

1
2ε
)

for ε, δ > 0 chosen sufficiently small
and a < 0 chosen sufficiently large negative. But let us now quickly discuss why we
can disregard the endpoints of each interval.

Note that the functions 1
3εe

r and sinh(r) intersect at approximately r = 1
3ε, and

εe
1
2 r = sinh(2r) at approximately r = 1

2ε. So the use of the term “bend” in our
discussion above really meant to apply the following Lemma from [Bel11] to the
concatenation of the two functions.

Lemma 4.1. Given real numbers k, a1, c, a2 with a1 < c < a2, let f1 : [a1, c] → R
and f2 : [c, a2] → R be C2 functions satisfying f ′′i ≥ k, f1(c) = f2(c), and f ′1(c) ≤
f ′2(c). If f : [a1, a2]→ R denotes the concatenation of f1 and f2, then for any small
δ > 0 there exists a C2 function fδ : [a1, a2]→ R such that

(1) f ′′δ > k.
(2) fδ = f and f ′δ = f ′ at the points a1 and a2.
(3) if f is increasing, then f ′δ > 0.
(4) if f is Cl on [a1, a2] for some integer l ∈ [0,∞], then fδ if Cl on [a1, a2],

and fδ converges to f in the Cl-topology on [a1, a2] as δ → 0.

Since the sectional curvature of g will be bounded above by a negative constant
on each interval, we can apply Lemma 4.1 to arbitrarily small neighborhoods of
r = 1

3ε and r = 1
2ε and maintain the fact that g has negative sectional curvature.

We will define h to be a smooth function near r = a, and so there will be no issues
at that endpoint either.

4.1. The interval (−∞, a). On this region we have

h = δer v =
1

3
εer vr = εe

r
2 .

Plugging these directly into equation (3.4), we obtain:

Kγ(σ) = a21b
2
2

[
−1− 4

δ2e2r
− 3ε2

4δ4e3r

]
− (a21b

2
6 + a25b

2
2)

+ a25b
2
6

[
−1 +

36

ε2e2r
− 243

4ε2e3r

]
− 3a1a5b2b6

(
9

2δ2e3r

)
.(4.2)

Now, since r ≤ a << 0, the terms containing an e3r in the denominator will
dominate this sum. Isolating those terms, we have

Kγ(σ) ≈ −a21b22
(

3ε2

4δ4e3r

)
− a25b26

(
243

4ε2e3r

)
− a1a5b2b6

(
27

2δ2e3r

)
=

1

e3r

[
−a21b22

(
3ε2

4δ4

)
− a25b26

(
243

4ε2

)
− a1a5b2b6

(
27

2δ2

)]
.(4.3)

We claim that, for any fixed ε > 0, there exists δ > 0, such that the term inside
the brackets in (4.3) is nonpositive. To see this, first note that if either a1 = 0
or b2 = 0, then the third term (the mixed term) is 0 and thus this sum has to be
nonpositive for any choice of δ. So let us now fix a1, a5, b2, and b6 with both a1 and
b2 not zero. Then since the first term is nonzero and has a δ4 in its denominator, we
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can choose δ sufficiently small to ensure that the entire term is negative. Since the
possible selections for a1, a5, b2, and b6 is compact (recall a21 + a25 = 1 = b22 = b26),
there exists a positive δ which works for all values of the parameters.

Let us remark that, even though (4.3) can be zero (which happens, for example,
when a1 = 1 = b6 and a5 = b2 = 0), the sectional curvature tensor is still bounded
above by a negative constant on this region. This is clear if we go back to the
original curvature equation (4.2). If (4.3) is zero, then one of a21b

2
6 or a25b

2
2 is not

zero. This ensures that (4.2) is still negative.

4.2. The interval
(
a, 13ε

)
. Over this region we keep the functions

v =
1

3
εer vr = εe

r
2

while slowly warping h from δer to cosh(r). More specifically, we define h to be a
smooth function on

(
−∞, 13ε

)
which satisfies:

(1) h = δer on (−∞, a).

(2) h(r) ≈ δea
(

1− α

b− a

)
+ cosh

(
1

3
ε

)(
α

b− a

)
for all r ∈

(
a,

1

3
ε

)
and where α = r − a ∈

(
0,

1

3
ε− a

)
.

(3) h′(r) ≈
cosh

(
1
3ε
)
− δea

1
3ε− a

< sinh

(
1

3
ε

)
for all r ∈

(
a,

1

3
ε

)
.

(4) h′′(r) > 0 small for all r ∈
(
a,

1

3
ε

)
.

Such a function h clearly exists. One should note that, for ε > 0 fixed, we choose
a sufficiently large (negative) to guarantee the inequality in (3).

Plugging these functions into equation (3.4), we obtain

Kγ(σ) = a21b
2
2

[
−
(
h′

h

)2

− 4

h2
− 3ε2er

4h4

]
+ (a21b

2
6 + a25b

2
2)

(
−h
′

h

)
(4.4)

+ a25b
2
6

[
−1 +

36

ε2e2r
− 243

4ε2e3r

]
− 27

2
a1a5b2b6

(
1

h2er

)
≈ a21b22

[
− 4

h2
− 3ε2er

4h4

]
+ a25b

2
6

[
−1 +

36

ε2e2r
− 243

4ε2e3r

]
(4.5)

− 27

2
a1a5b2b6

(
1

h2er

)
.

To show that (4.5) is always negative for ε > 0 chosen sufficiently small, we need
to break up the interval

[
a, 13ε

]
at some large negative constant. Let us choose

−1000. So we will first consider the interval [a,−1000], and then the interval[
−1000, 13ε

]
.

So we first let r ∈ [a,−1000], and consider the second summand of (4.5). Since
r is large negative and both variable terms have an “ε2” in the denominator, the
term with the e3r in the denominator dominates this second summand. Therefore
this second summand is always negative, and becomes arbitrarily large negative as
ε approaches 0. We can then proceed as we did in the previous subsection. For any
fixed a1, a5, b2, and b6, we can choose ε > 0 so that (4.5) is nonpositive. Then since
the domain for those parameters is compact, we can choose ε > 0 so that (4.5) is
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nonpositive for all values of a1, a5, b2, and b6. Also, Kγ(σ) is always bounded above
by a negative constant due to the presence of the

(a21b
2
6 + a25b

2
2)

(
−h
′

h

)
term in (4.4).

Let us now consider the case when r ∈
[
−1000, 13ε

]
. The difference now is

that the e3r term in the second summand does not necessarily dominate the e2r

term. But this second summand is still always negative since 243
4 > 36 (and since

e2r ≈ e3r ≈ 1 when r ≈ 0). And moreover, the second summand of (4.5) still
becomes arbitrarily large negative as ε > 0 is chosen sufficiently small. So for any
fixed values for a1, a5, b2, and b6 and for a fixed choice for r, we can choose ε > 0
so that (4.5) is nonpositive. But since the domain for the parameters a1, a5, b2, b6,
and r is compact, we can choose ε > 0 so that (4.5) is nonpositive for all choices of
a1, a5, b2, and b6 and for all r ∈

[
−1000, 13ε

]
. Of course, the interval

[
−1000, 13ε

]
depends on ε. But the interval decreases in size as ε approaches zero, and so this
does not effect the above compactness argument.

For a discussion on why we needed to break up the interval at −1000, please see
Subsection 4.4 below.

Finally, in a small neighborhood of r = 1
3ε, we use Lemma 4.1 to bend v from

1
3εe

r to sinh(r).

4.3. The interval
(
1
3ε,

1
2ε
)
. Over this region we have

h = cosh(r) v = sinh(r) vr = εe
r
2 .

When we evaluate (3.4) with these function values, we get

Kγ(σ) = a21b
2
2

[
− sinh2(r)

cosh2(r)
− 4

cosh2(r)
− 3ε2er

4 cosh4(r)

]
− (a21b

2
6 + a25b

2
2)

+ a25b
2
6

[
−cosh2(r)

sinh2(r)
+

4

sinh2(r)
− 3ε2er

4 sinh4(r)

]
+

3

2
a1a5b2b6

(
−ε2er

sinh2(r) cosh2(r)

)
.

Since r is near 0, we use the 1st order Taylor approximations

cosh(r) ≈ 1 sinh(r) ≈ r er ≈ 1 + r

to obtain

Kγ(σ) ≈ a21b22
[
−r2 − 4− 3

4
ε2(1 + r)

]
− (a21b

2
6 + a25b

2
2)

+ a25b
2
6

[
− 1

r2
+

4

r2
− 3ε2(1 + r)

4r4

]
+

3

2
a1a5b2b6

(
−ε2(1 + r)

r2

)
≈ a21b22

[
−4− 3

4
ε2(1 + r)

]
− (a21b

2
6 + a25b

2
2)(4.6)

+ a25b
2
6

[
3

r2
− 3ε2

4r3
− 3ε2

4r4

]
+

3

2
a1a5b2b6

(
−ε

2

r
− ε2

r2

)
.
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We can write r = kε for some k ∈
[
1
3 ,

1
2

]
. Substituting this into (4.6) yields

Kγ(σ) ≈ a21b22
[
−4− 3

4
ε2(1 + kε)

]
− (a21b

2
6 + a25b

2
2)

+ a25b
2
6

[
3

k2ε2
− 3

4k3ε
− 3

4k4ε2

]
− 3

2
a1a5b2b6

(
1

k2
+

ε

k2

)
≈ −4a21b

2
2 − (a21b

2
6 + a25b

2
2) + a25b

2
6

[
−3 + 12k2

4k4ε2
− 3

4k3ε

]
(4.7)

− 3

2k2
a1a5b2b6.

Consider the third term of equation (4.7). Since we will choose ε small, the
term with the ε2 in the denominator (generally) dominates the third summand.
But notice that the numerator is always ≤ 0 for k ∈

[
1
3 ,

1
2

]
, and is only zero for

k = 1
2 . For k arbitrarily close to 1

2 , the second term becomes the larger term and
it becomes arbitrarily large negative as ε→ 0. The point here is that the quantity

−3 + 12k2

4k4ε2
− 3

4k3ε
for k ∈

[
1

3
,

1

2

]
approaches −∞ as ε → 0. We can therefore apply a similar argument to what we
have previously. Since the domain for the parameters a1, a5, b2, and b6 is compact,
we can choose ε > 0 sufficiently small so that (4.7) is bounded above by a negative
constant.

4.4. Order in which we choose the parameters δ, a, and ε. The purpose
of this Subsection is to ensure that we can choose the parameters δ, a, and ε as
required above.

We first start with a < −1000 not yet fixed. We then fix ε > 0 so that Kγ(σ)
is bounded above by a negative constant on the intervals [a,−1000],

[
−1000, 13ε

]
,

and
[
1
3ε,

1
2ε
]
, and recall that the selection of ε was independent of r in the interval

[a,−1000]. Similarly we choose δ > 0 so that Kγ(σ) is bounded above by a neg-
ative constant on the interval (−∞, a), and recall that this selection of δ was also
independent of r.

We then (if necessary) choose a larger (negative) so that condition (3) in the
definition of h(r) in the interval

[
a, 13ε

]
is satisfied. That is, so that

h′(r) ≈
cosh

(
1
3ε
)
− δea

1
3ε− a

< sinh

(
1

3
ε

)
for all r ∈

(
a,

1

3
ε

)
.

This condition is necessary in order to apply Lemma 4.1 at the endpoint r = 1
3ε.

So it is necessary that we choose a after fixing ε.
The reason that we needed to break the interval

[
a, 13ε

]
at a large negative

number is because we needed to use a compactness argument for r on the region
containing zero. But we couldn’t use this on the entire interval, since choosing a
after fixing ε expands the interval.
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