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Abstract. This is a preliminary version.

1. Introduction

Theorem 1.1. Suppose that M is a Riemannian manifold modeled on CHn, and
that N is a codimension two totally geodesic submanifold of M modeled on CHn−1.
Furthermore, assume that the d-fold cyclic ramified cover X of M about N is a
smooth manifold. Then X admits a smooth Riemannian metric whose sectional
curvature is bounded above by a negative constant, provided that the normal injec-
tivity radius of N in M is sufficiently large.

2. Hyperbolic and complex hyperbolic metrics in polar coordinates

In this Section we describe the curvature formulas for Hn and CHn written in
terms of polar coordinates about a copy of Hn−2 or CHn−1, respectively. The
(Hn,Hn−2) case is from [Bel12], but can also be found in [LMMT] and [Min17b].
The curvature formulas for (CHn,CHn−1) were derived in [Bel11] for curvatures in
[−1,−1/4], and converted to curvatures in [−4,−1] in [Min17b]. In what follows
we will simply stick with the model cases (Hn,Hn−2), and (CHn,CHn−1), but of
course all of these computations will “descend” to the pair (M,N).

2.1. The metric on Hn in polar coordinates about Hn−2. Let Hn−2 denote
a totally geodesic codimension two submanifold in Hn, let r denote the distance to
Hn−2 within Hn, and let hn, hn−2 denote the metrics on Hn and Hn−2, respectively.
Let φh : Hn → Hn−2 denote the orthogonal projection onto Hn−2, and let Eh(r)
denote the r-tube about Hn−2. It is well known (see for example [Bel12]) that with
a suitable identification Eh(r) ∼= S1×Rn−2. The metric for Hn in polar coordinates
about Hn−2 is given by

(2.1) hn = cosh2(r)hn−2 + sinh2(r)dθ2 + dr2

where dθ2 denotes the round metric on the unit circle S1. Note that the metric in
equation (2.1) is defined on E × [0,∞), where E is an arbitrary r-tube as defined
above.

A key feature of the real hyperbolic metric is the following. Let p ∈ Hn−2 and
let X̌1, X̌2, . . . , X̌n−2 be a local orthonormal frame near p in Hn−2 satisfying that
[X̌i, X̌j ]p = 0 for all i, j. Let q ∈ Hn be such that φh(q) = p. Extend the collection

(X̌i)
n−2
i=1 to vector fields X1, X2, . . . , Xn−2 defined near q in Hn via dφ−1h , which are
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orthogonal to both ∂
∂θ and ∂

∂r . Then the key property is that [Xi, Xj ]q = 0 for all

i, j, or equivalently that the distribution determined by (Xi)
n−2
i=1 is integrable.

Let v(r) and h(r) be positive real-valued functions of r. Define the metric λ :=
λv,h on E × (0,∞) by

λ = h2hn−2 + v2dθ2 + dr2.

Of course, when v = sinh(r) and h = cosh(r) we recover the hyperbolic metric
hn. Fix vector fields (Xi)

n−2
i=1 as above. Let Xn−1 = ∂

∂θ and Xn = ∂
∂r . Define the

following orthonormal frame for λ:

Yi =
1

h
Xi for 1 ≤ i ≤ n− 2 Yn−1 =

1

v
Xn−1 Yn = Xn.

Formulas for the components of the (4, 0) curvature tensor Rλ for λ are given by
the following Theorem.

Theorem 2.1 (c.f. Section 2 of [Bel12]). Let Rλi,j,k,l := 〈Rλ(Yi, Yj)Yk, Yl〉λ. Then
up to the symmetries of the curvature tensor, the only nonzero components of the
(4,0) curvature tensor Rλ are the following:

Rλi,j,i,j = − 1

h2
−
(
h′

h

)2

Rλi,n−1,i,n−1 = −h
′v′

hv

Rλi,n,i,n = −h
′′

h
Rλn−1,n,n−1,n = −v

′′

v

where 1 ≤ i, j ≤ n− 2.

One easily checks that plugging in the values v(r) = sinh(r) and h(r) = cosh(r)
gives all sectional curvatures of −1.

2.2. The metric on CHn in polar coordinates about CHn−1. Let CHn−1
denote a (real codimension two) complex line in CHn, let r denote the distance to
CHn−1 within CHn, and let cn and cn−1 denote the metrics on CHn and CHn−1
normalized to have constant holomorphic curvature −4. Let φc : CHn → CHn−1
denote the orthogonal projection onto CHn−1, and let Ec(r) denote the r-tube
about CHn−1. It is proved in [Bel11] that with a suitable identification we have
Ec(r) ∼= S1×R2n−2. The metric in CHn in polar coordinates about CHn−1 is then
given by

(2.2) cn = cosh2(r)cn−1 +
1

4
sinh2(2r)dθ2 + dr2.

Note that the presence of the 1/4 in the dθ2 term is so that cn is complete, or
equivalently so that cn has total angle of 2π about the core copy of CHn−1.

Just as above, we need to understand the Lie brackets associated to the metric
in (2.2). Let p ∈ CHn−1 and let X̌1, X̌2, . . . , X̌2n−2 be a local orthonormal frame
near p in CHn−1 satisfying that [X̌i, X̌j ]p = 0 for all i, j. Let q ∈ CHn be such

that φc(q) = p. Extend the collection (X̌i)
2n−2
i=1 to vector fields X1, X2, . . . , X2n−2

defined near q in CHn via dφ−1c , which are orthogonal to both ∂
∂θ and ∂

∂r . Then
for all 1 ≤ i, j,≤ 2n− 2, there exist structure constants cij such that

(2.3) [Xi, Xj ] = cij
∂

∂θ
.
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Combining the work in Section 5 of [Bel11] with Lemma 4.2 in [Min17b], it is not
hard to see that

(2.4) −2 ≤ cij ≤ 2 for all i and j.

Also, cij = 0 if and only if (Xi, Xj) spans a totally real totally geodesic 2-plane,
whereas cij = ±2 if and only if (Xi, Xj) spans a complex line.

Let v(r) and h(r) be positive real-valued functions of r. Define the metric µ :=
µv,h on E × (0,∞) by

(2.5) µ = h2cn−1 +
1

4
v2dθ2 + dr2.

Of course, when v = sinh(2r) and h = cosh(r) we recover the complex hyperbolic
metric cn. Fix vector fields (Xi)

2n−2
i=1 as above. Let X2n−1 = ∂

∂θ and X2n = ∂
∂r .

Define the following orthonormal frame for µ:

(2.6) Yi =
1

h
Xi for 1 ≤ i ≤ 2n− 2 Y2n−1 =

1
1
2v
X2n−1 Y2n = X2n.

Formulas for the components of the (4, 0) curvature tensor Rµ of µ are given by
the following Theorem.

Theorem 2.2 (compare Sections 7 and 8 of [Bel11] with Theorem 4.3 of [Min17b]).
Let Rµi,j,k,l := 〈Rµ(Yi, Yj)Yk, Yl〉µ. We then have the following formulas for compo-

nents of the (4,0) curvature tensor Rµ:

Rµi,j,i,j = − 1

h2
−
(
h′

h

)2

−
3c2ij
4h2
−

3c2ijv
2

16h4
Rµi,2n−1,i,2n−1 = −h

′v′

hv
+

v2

4h4

Rµi,2n,i,2n = −h
′′

h
Rµ2n−1,2n,2n−1,2n = −v

′′

v

Rµi,j,2n−1,2n = 2Rµi,2n−1,j,2n = −2Rµi,2n,j,2n−1 = −cij
v

2h2

(
ln
v

h

)′
.

where 1 ≤ i, j ≤ 2n− 2.

It is a nice exercise to check that plugging in the values v(r) = sinh(2r), h(r) =
cosh(r), and cij = 0 or ±2 yields the correct values for the sectional curvature
tensor (which one can compute via equation (5.1) below). Analogously, one can
check that inserting the appropriate values for cij gives the corresponding formulas
from [Min17b]. Lastly, the above formulas can be obtained from the formulas in
Sections 7 and 8 of [Bel11] by making the substitutions h → 1

2h, v → 1
2v, and

cij → cij
4 .

There is one more nonzero component of Rµ (up to the symmetries of the cur-
vature tensor) which is not listed in Theorem 2.2: the mixed terms which come
entirely from the core CHn−2. In what follows we will only need a specific form
of this mixed term, which we describe now. Suppose that (Xi, Xj) and (Xk, Xl)
span an orthogonal pair of complex lines. The orthogonality implies that all other
pairings span totally real totally geodesic 2-planes. Then using the notation of
Theorem 2.2, we have (c.f. Theorem 4.3 of [Min17b]):

(2.7) Rµi,j,k,l = 2Rµi,k,j,l = −2Rµi,l,j,k = ±
(

2

h2
+

v2

2h4

)
.
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2.3. Curvature formulas in CHn \ CHn−1 with respect to a holomorphic
basis. In some of the metrics in Section 3, we will make the assumption that all
of the structure constants in (2.3) are identically zero. Computing the components
of the sectional curvature tensor is more complicated than just plugging cij = 0
into the equations in Theorem 2.2. The reason for this is because those curvature
formulas were computed under a fixed sum of squares for the structure constants
(see eqn 5.11 of [Bel11]). So in this Subsection we quickly reproduce the calculations
of Sections 6 and 7 of [Bel11] for this specific situation.

For simplicity, we will restrict ourselves to a holomorphic basis of CHn−1. A
holomorphic basis for CHn−1 is an orthonormal basis (X1, X2, . . . , X2n−2) such
that

(1) for every odd integer i, the pair (Xi, Xi+1) spans a complex line. Moreover,
JXi = Xi+1, where J denotes the complex structure on CHn.

(2) for j an odd integer different from i, the pair (Xi, Xj) spans a totally real
totally geodesic 2-plane.

Now let (Xi), (Yi), and µ be exactly as in equations (2.5) and (2.6), with the
additional assumption that (Xi)

2n−2
i=1 is a holomorphic basis for the horizontal com-

ponent of TqCHn. For i an odd integer, define

[Xi, Xi+1] = ci
∂

∂θ

and assume [Xi, Xj ] = 0 if j 6= i+ 1. Note that this is just a special case of (2.3),
since cij = 0 if (Xi, Xj) spans a totally real totally geodesic 2-plane.

The goal is to compute the components of the (4, 0) curvature tensor Rµ of µ
with respect to this set-up. These equations are stated in the following Theorem.

Theorem 2.3. Let Rµi,j,k,l := 〈Rµ(Yi, Yj)Yk, Yl〉µ, and let (Xi)
2n−2
i=1 be a holomor-

phic basis. We then have the following formulas for components of the (4,0) cur-
vature tensor Rµ with respect to the corresponding orthonormal basis (Yi)

2n
i=1:

Rµi,j,i,j = − 1

h2
−
(
h′

h

)2

Rµi,2n−1,i,2n−1 = −h
′v′

hv
+
c2i v

2

16h4

Rµi,i+1,i,i+1 = −
(
h′

h

)2

− 4

h2
− 3c2i v

2

16h4

Rµi,2n,i,2n = −h
′′

h
Rµ2n−1,2n,2n−1,2n = −v

′′

v

Rµi,i+1,2n−1,2n = 2Rµi,2n−1,i+1,2n = −2Rµi,2n,i+1,2n−1 = −ci
v

2h2

(
ln
v

h

)′
Rµi,i+1,k,k+1 = 2Rµi,k,i+1,k+1 = −2Rµi,k+1,i+1,k = − 2

h2
− cickv

2

8h4

where 1 ≤ i, j, k ≤ 2n − 2, k is an odd integer different from i, and j 6= i, i + 1.
Also, any equations using both i and i+ 1 assume that i is an odd integer.

Proof. The proof here is analogous to Section 6 of [Bel11]. We compute the A and
T tensors of the metric

µr = h2cn−1 +
1

4
v2dθ2.
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We then use Theorem 9.28 of [Bes87] to compute formulas for the components of
the sectional curvature tensor Rµr of µr. Finally, we use equations (5.2) through
(5.5) to obtain the components of Rµ.

First, by identical reasoning to [Bel11], the fibers of the Riemannian submersion
are totally geodesic. Thus, the T tensor is identically zero. We now compute the
A tensor. For this, we fix the notation that i is an odd integer and j 6= i, i+ 1.

By ([Bes87] eqn. 9.24) we have that

AXiXi+1 =
1

2
V [Xi, Xi+1] =

ci
2
X2n−1 and AXiXj = 0.

Then by ([Bes87] eqn. 9.21d), we have

〈AXi
X2n−1, Xi+1〉µr

= −〈AXi
Xi+1, X2n−1〉µr

= −ci
2
〈X2n−1, X2n−1〉µr

= −ci
8
v2.

In a similar manner we see that all other components of AXi
X2n−1 are zero. Thus,

we have that

AXi
X2n−1 = −civ

2

8h2
Xi+1 and AXi+1

X2n−1 =
civ

2

8h2
Xi.

We are now ready to compute the components of Rµr in terms of the basis

(Yi)
2n−1
i=1 . In the following calculations we use Theorem 9.28 from [Bes87], as well

as the linearity of the curvature tensor. Also, in the fourth bullet point, j denotes
an odd integer different from i.

• 〈Rµr
(Xi, X2n−1)Xi, X2n−1〉µr

= 〈AXi
X2n−1, AXi

X2n−1〉µr
=
c2i v

4

64h4
· h2 =

c2i v
4

64h2

=⇒ 〈Rµr
(Yi, Y2n−1)Yi, Y2n−1〉µr

=
4

h2v2
· c

2
i v

4

64h2
=
c2i v

2

16h4
.

• 〈Rµr (Xi, Xi+1)Xi, Xi+1〉µr = 〈Řµr (X̌i, X̌i+1)X̌i, X̌i+1〉µr − 3〈AXiXi+1, AXiXi+1〉µr

= −4h2 − 3c2i v
2

16

=⇒ 〈Rµr
(Yi, Yi+1)Yi, Yi+1〉µr

=
1

h4
·
(
−4h2 − 3c2i v

2

16

)
= − 4

h2
− 3c2i v

2

16h4
.

• 〈Rµr (Xi, Xj)Xi, Xj〉µr = 〈Řµr (X̌i, X̌j)X̌i, X̌j〉µr − 3〈AXiXj , AXiXj〉µr = −h2

=⇒ 〈Rµr (Yi, Yj)Yi, Yj〉µr =
1

h4
· (−h2) = − 1

h2
.

• 〈Rµr
(Xi, Xi+1)Xj , Xj+1〉µr

= 〈Řµr
(X̌i, X̌i+1)X̌j , X̌j+1〉µr

− 2〈AXi
Xi+1, AXj

Xj+1〉µr

= −2h2 − 2

(
cicj

4
· v

2

4

)
= −2h2 − cicjv

2

8

=⇒ 〈Rµr
(Yi, Yi+1)Yj , Yj+1〉µr

=
1

h4
·
(
−2h2 − cicjv

2

8

)
= − 2

h2
− cicjv

2

8h4
.

A few quick remarks about the above calculations. All of the curvatures with
a “hat” above the symbols occur in the horizontal fiber, which is isometric to
the h2-multiple of cn−1. One can use equation (5.1) below to verify that the
corresponding curvatures above in cn−1 are indeed −4, −1, and −2. One can
also deduce from Theorem 9.28 in [Bes87] that Rµr

i+1,2n−1,i+1,2n−1 = Rµr

i,2n−1,i,2n−1,

and that Rµr

i,i+1,j,j+1 = 2Rµr

i,j,i+1,j+1 = −2Rµr

i,j+1,i1,j
(and recall that this subscript
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notation is just the components of the curvature tensor with respect to the ON
basis (Yi)).

Combining the above computations with equations (5.2) through (5.5) below
proves the Theorem.

�

2.4. Sectional Curvatures in CHn\CHn−1. The fact that Rµ has nonzero mixed
terms adds difficulty to showing that the sectional curvature of µ is bounded above
by a negative constant. The purpose of this Subsection is to provide two ways of
proving this.

The first method, which will be used in tandem with Theorem 2.3, is the following
Lemma. This Lemma is virtually identical to Lemma 9.1 of [Min16]. Its proof is
identical, and so we omit it.

Lemma 2.4. Using the notation of Theorem 2.3, suppose that

Ri,j,i,j ≤ −|Ri,j,k,l| and Rk,l,k,l ≤ −|Ri,j,k,l|

for all 1 ≤ i, j, k, l ≤ 2n. Furthermore, assume that if any of the above mixed terms
are zero, then the corresponding inequalities are strict. Then there exists C < 0
such that K(σ) < C for any 2-plane σ.

The second method is that described by Belegradek in Section 9 of [Bel11]. This
will be used in conjunction with Theorem 2.2 to prove Theorem 3.2 below. We
quickly describe this method now.

Let σ be a 2-plane in TqCHn, and assume that dφc(σ) is a 2-plane in TpCHn−2
(where p = φc(q)). Note that this is a generic assumption: almost all 2-planes in
TqCHn satisfy this assumption. So if we show that K(σ) is bounded above by a
negative constant, then all sectional curvatures are bounded above by a negative
constant by continuity.

Following Section 9 of [Bel11], we can find orthonormal vector fields (X1, X2)
near p and an orthonormal basis (A,B) of σ such that

(2.8) A = a1Y1 + a2Y2 + a3Y2n−1 + a4Y2n and B = b1Y1 + b3Y2n−1.

Then a direct computation shows that (c.f. equation (9.1) of [Bel11], where we
substitute A and B for C and D)

K(σ) =(a21 + a23)Rµ1,2n−1,1,2n−1 + a22b
2
3R

µ
2,2n−1,2,2n−1

+ a24b
2
3R

µ
2n−1,2n,2n−1,2n + a24b

2
1R

µ
1,2n,1,2n(2.9)

+ a22b
2
1R

µ
1,2,1,2 + 3a2a4b1b3R

µ
2n,2n−1,1,2.

3. Four special metrics

All metrics in this Section are defined on the product E× [0,∞) ∼= R2n−2×S1×
[0,∞) except for the last metric gk, which is only defined on E × (0,∞).

3.1. The hyperbolized complex-hyperbolic metric ghch. The hyperbolized
complex-hyperbolic metric ghch is defined by setting h(r) = cosh(r) and v(r) =
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2 sinh(r) in equation (2.5), and keeping the same structure constants as the com-
plex hyperbolic metric (that is, those defined in (2.3) and (2.4)). So

ghch = cosh2(r)cn−1 + sinh2(r)dθ2 + dr2.

The name of this metric comes from the fact that it has the same structure constants
as the complex-hyperbolic metric, but has the same coefficients as the hyperbolic
metric.

Note that, in the complex-hyperbolic metric, v(r) = sinh(2r) = 2 sinh(r) cosh(r).
Of course, cosh(0) = 1, and so ghch is a complete metric on R2n which induces the
complex-hyperbolic metric cn−1 on the core codimension two copy of Rn−2. This
fact is crucial for the warping construction in the following Section.

We now turn our attention to the sectional curvature tensor Rhch of ghch. The
following Lemma just uses Theorem 2.2 to compute certain components of Rhch.

Lemma 3.1. Using the notation of Theorem 2.2, we have:

Rhchi,j,i,j = −1−
3c2ij

4 cosh2(r)
−

3c2ij sinh2(r)

4 cosh4(r)
Rhchi,2n−1,i,2n−1 = −1 +

sinh2(r)

cosh4(r)

Rhchi,2n,i,2n = −1 Rhch2n−1,2n,2n−1,2n = −1 Rhchi,j,2n−1,2n = − cij

cosh3(r)

where 1 ≤ i, j ≤ 2n− 2.

Note that ghch is asymptotically hyperbolic as each term above containing a
hyperbolic trigonometric function approaches zero as r approaches infinity (also, the

term from (2.7) is equal to ±
(

2
cosh2(r)

+ 2 sinh2(r)
cosh4(r)

)
and similarly approaches zero).

To see that ghch has sectional curvature bounded above by a negative constant we
use equation (2.9). We include this as the next Theorem.

Theorem 3.2. The sectional curvature of ghch is bounded above by a negative
constant.

Proof. Let σ ⊂ TpCHn be a 2-plane as described in equation (2.8). Then plugging
the values from Lemma 3.1 into equation (2.9) yields:

K(σ) = (a21 + a23 + a22b
2
3)

(
−1 +

sinh2(r)

cosh4(r)

)
− a24b23 − a24b21

+ a22b
2
1

(
−1− 3c212

4 cosh2(r)
− 3c212 sinh2(r)

4 cosh4(r)

)
+ 3a2a4b1b3

c12

cosh3(r)

= −1 + (a21 + a23 + a22b
2
3)

sinh2(r)

cosh4(r)
− a22b21

(
3c212

4 cosh2(r)
+

3c212 sinh2(r)

4 cosh4(r)

)
(3.1)

+ 3a2a4b1b3
c12

cosh3(r)

where the second equality follows from the fact that a21+a22+a23 = a24 = 1 = b21+b23.
Two remarks about (3.1). The first remark is that the first and third summands

are always negative, the second is always positive, and the fourth can be either sign.



8 BARRY MINEMYER

The second remark is that each component containing a hyperbolic trigonometric
function approaches zero as r approaches infinity. Thus, the only possibility for
nonnegative curvature is when r is small.

Now, when r = 0 we have:

K(σ) = −1− 3

4
a22b

2
1c

2
12 + 3a2a4b1b3c12.

One can check that the above equation is maximized when

a2 = a4 = b1 = b3 =
1√
2
, c12 = −2 [recall that (A,B) is an ON basis]

and this point is unique up to the sign of the entries. At this point, we have that

(3.2) K(σ) = −1− 3

4
+

3

2
= −1

4
.

Let us now return our attention to equation (3.1). The second summand is the
only other term which can contribute positive curvature. The expression (a21 +
a23 + a22b

2
3) is bounded above by 1, and it is a calculus exercise to check that the

expression sinh2(r)/ cosh4(r) is maximized when sinh(r) = 1. When sinh(r) = 1
we have that cosh2(r) = 2, and therefore the second summand in (3.1) is bounded
above by 1/4. Combining this fact with (3.2) proves that ghch has nonpositive
curvature.

To show that ghch has curvature bounded above by a negative constant, just
note that the fourth summand in (3.1) is maximized when r = 0 whereas the
second summand is maximized at r = sinh−1(1). Then since K(σ) < 0 on the
compact interval [0, sinh−1(1)], it is bounded above by a negative constant. This
same constant is an upper bound for K for all r ∈ [0,∞). �

3.2. The weak complexified hyperbolic metric gwch. The weak complexified
hyperbolic metric gwch is defined by setting h(r) = cosh(r) and v(r) = 2 sinh(r) in
equation (2.5), and using the structure constants from the hyperbolic metric (that
is, setting all structure constants defined in (2.3) identically equal to zero). So as
a metric, we have that

gwch = cosh2(r)cn−1 + sinh2(r)dθ2 + dr2.

But gwch 6= ghch due to the differences in the structure constants. The name of this
metric comes from the fact that it has the same structure constants and coefficients
as the hyperbolic metric. If one replaced cn−2 with h2n−2 in the above equation,
then we would have that gwch = h2n.

Setting ci = ck = 0 in Theorem 2.3 proves the following Lemma.
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Lemma 3.3. Using the notation of Theorem 2.3, we have:

Rwchi,j,i,j = −1 Rwchi,2n−1,i,2n−1 = −1 Rwchi,2n,i,2n = −1

Rwchi,i+1,i,i+1 = −1− 3

cosh2(r)
Rwch2n−1,2n,2n−1,2n = −1

Rwchi,i+1,2n−1,2n = Rwchi,2n−1,i+1,2n = Rwchi,2n,i+1,2n−1 = 0

Rwchi,i+1,k,k+1 = 2Rwchi,k,i+1,k+1 = −2Rwchi,k+1,i+1,k = − 2

cosh2(r)

where 1 ≤ i, j, k ≤ 2n − 2, k is an odd integer different from i, and j 6= i, i + 1.
Also, any equations using both i and i+ 1 assume that i is an odd integer.

Notice again that every term above containing a hyperbolic trigonometric func-
tion approaches zero as r approaches infinity. Thus, gwch is asymptotically hyper-
bolic.

Also, note that for all odd integers i:

Rwchi,i+1,i,i+1 = −1− 3

cosh2(r)
< − 2

cosh2(r)
= Rwchi,i+1,k,k+1.

So we can apply Lemma 2.4 to prove the following Corollary.

Corollary 3.4. The sectional curvature of gwch is bounded above by a negative
constant.

3.3. The strong complexified hyperbolic metric gsch. The strong complexified
hyperbolic metric gsch is defined by setting h(r) = cosh(r) and v(r) = sinh(2r) =
2 sinh(r) cosh(r) in equation (2.5), and setting all structure constants defined in
(2.3) identically equal to zero. So as a metric, we have that

gsch = cosh2(r)cn−1 +
1

4
sinh2(2r)dθ2 + dr2.

The name of this metric comes from the fact that it has the same structure
constants as the hyperbolic metric, but has the same coefficients as the complex-
hyperbolic metric. This metric is more similar to the complex-hyperbolic metric
than gwch, which explains the terminology “strong complexified” versus “weak
complexified”.

Setting ci = cj = 0 in Theorem 2.3, as well as inserting h = cosh(r) and
v = 2 sinh(r) cosh(r), proves the following Lemma.

Lemma 3.5. Using the notation of Theorem 2.3, we have:

Rschi,j,i,j = −1 Rschi,2n−1,i,2n−1 = −1− tanh2(r) Rschi,2n,i,2n = −1

Rschi,i+1,i,i+1 = −1− 3

cosh2(r)
Rsch2n−1,2n,2n−1,2n = −4

Rschi,i+1,2n−1,2n = Rschi,2n−1,i+1,2n = Rschi,2n,i+1,2n−1 = 0

Rschi,i+1,k,k+1 = 2Rschi,k,i+1,k+1 = −2Rschi,k+1,i+1,k = − 2

cosh2(r)
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where 1 ≤ i, j, k ≤ 2n − 2, k is an odd integer different from i, and j 6= i, i + 1.
Also, any equations using both i and i+ 1 assume that i is an odd integer.

Using the exact same reasoning as Corollary 3.4, we have the analogous Corollary.

Corollary 3.6. The sectional curvature of gsch is bounded above by a negative
constant.

3.4. The d-fold weak complexified hyperbolic metric gd. Let d ≥ 2 be a
positive integer. The d-fold weak complexified hyperbolic metric gd is defined as
h(r) = cosh(r) and v(r) = 2d sinh(r) in equation (2.5), and setting all structure
constants defined in (2.3) identically equal to zero. So as a metric, we have that

gd = cosh2(r)cn−1 + d2 sinh2(r)dθ2 + dr2.

Note that this metric has angle equal to 2dπ about the core copy of CHn−1, and so
is therefore only defined on E × (0,∞). Moreover, for the metric to be complete,
we need to restrict it to E × (r0,∞) for some r0 > 0.

Setting ci = cj = 0 in Theorem 2.3, as well as inserting h = cosh(r) and
v = 2d sinh(r), proves the following Lemma.

Lemma 3.7. Using the notation of Theorem 2.3, we have:

Rdi,j,i,j = −1 Rdi,2n−1,i,2n−1 = −1 Rdi,2n,i,2n = −1

Rdi,i+1,i,i+1 = −1− 3

cosh2(r)
Rd2n−1,2n,2n−1,2n = −1

Rdi,i+1,2n−1,2n = Rdi,2n−1,i+1,2n = Rdi,2n,i+1,2n−1 = 0

Rdi,i+1,k,k+1 = 2Rdi,k,i+1,k+1 = −2Rdi,k+1,i+1,k = − 2

cosh2(r)

where 1 ≤ i, j, k ≤ 2n − 2, k is an odd integer different from i, and j 6= i, i + 1.
Also, any equations using both i and i+ 1 assume that i is an odd integer.

Notice that the components of the curvature tensors for gd and gwch coincide.
Thus, we have the following Corollary.

Corollary 3.8. The sectional curvature of gd is bounded above by a negative con-
stant.

4. Proof of Theorem 1.1

Let M be a Riemannian manifold modeled on CHn, and let N be a codimension
two totally geodesic submanifold of M modeled on CHn−1. In this Section we
describe a smooth Riemannian metric g on E× [0,∞) ∼= R2n−2×S1× [0,∞) whose
curvature is bounded above by a negative constant, and which “descends” to the
degree d ramified covering of M about N . The existence of such a metric proves
Theorem 1.1.

An outline of the construction of g is as follows. Let 0 < r0 < r1 < r2 < r3 < r4.
The metric g is constructed via the following four (really six) steps:
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Step 0: Set g := ghch on the region E × [0, r0].
Step 1: The metric g “unbends” from ghch to gwch over E × (r0, r1].
Step 2: The metric g “increases in angle” from gwch to gd over E × (r1, r2].

At this point, the metric g restricted to R2n−2 × S1 × {r2} has total angle of 2dπ
about the core copy of R2n−2. Subdivide S1 into d equidistant arcs, and label them
A1, . . . , Ad. Then for each 1 ≤ l ≤ d, the metric g restricted to R2n−2×Al×{r2} has
total angle 2π about R2n−2. Moreover, gd restricted to a sector Al is identical to
gwch over all of S1. So in the last two steps we restrict our attention to R2n−2×Al,
where g = gwch. We then perform the same procedure for each l.

Step 3: The metric g “warps” from gwch to gsch over R2n−2 ×Al × (r2, r3].
Step 4: The metric g “bends” from gsch to cn over R2n−2 ×Al × (r3, r4].
Step 5: Set g = cn over R2n−2 ×Al × (r4,∞).

The constants r0 through r4 are chosen sufficiently large at each step to ensure
that we can keep the curvature of g bounded above by a negative constant. Steps 0
and 5 are straightforward. In the next four Subsections we describe Steps 1 through
4, and verify that the curvature of g is bounded above by a negative constant.

4.1. Step 1: Unbending ghch to gwch over (r0, r1]. Let us first note that this
Subsection is very similar to the proof of Theorem 4.1 in [LMMT].

Let P be a codimension two plane in R2n, and write R2n ∼= P × S1 × [0,∞) =
E × [0,∞) =: X. Recall from Section 2 that there exist orthogonal projections
φh : H2n → H2n−2 and φc : CHn → CHn−1. Let Eh(r) and Ec(r) denote the
r-tubes about H2n−2 and CHn−1, respectively. Since P ∼= H2n−2 ∼= CHn−1 is
contractible, we have that Eh(r) ∼= Ec(r) ∼= E (and where “ ∼= ” means “dif-
feomorphic”). Using the orthogonal projections φh and φc, fix diffeomorphisms
from (H2n,H2n−2) → (X,P ) and (CHn,CHn−1) → (X,P ) which are “radially
isometries”. By a radial isometry we mean the following. Let p ∈ H2n−2 (resp.
p ∈ CHn−1) and let f : H2n → X denote the radial isometry. Then we require
that f(Eh(r) ∩ φ−1h (p)) = (f(p),S1, {r}) for all such p and r, and that this map
is a linearly parameterized isometry of S1. Note that via these identifications of
(H2n,H2n−2) and (CHn,CHn−1) with (X,P ), it now makes sense to talk about the
orthogonal projections φh and φc as functions from X to P .

Let p ∈ P be arbitrary, and let q = (p, θ, r) ∈ X for some generic θ and r.
Fix an orthonormal frame (X̌h

i )2n−2i=1 of H2n−2 which satisfies [X̌h
i , X̌

h
j ]p = 0 for all

i, j. Then define the frame (Xh
i )2n−2i=1 over all of X by Xh

i := dφ−1h X̌h
i . Via the

considerations in Subsection 2.1 we have that for all i, j:

0 = [∂θ, ∂r] = [Xh
i , ∂θ] = [Xh

i , ∂r] = [Xh
i , X

h
j ]

where ∂θ = ∂
∂θ and ∂r = ∂

∂r .

Now fix a holomorphic frame (X̌c
i )2n−2i=1 of CHn−1 which also satisfies that [X̌c

i , X̌
c
j ]p =

0 for all i, j. Use this frame to analogously define (Xc
i )2n−2i=1 over all of X. Then

from Subsection 2.2 we know that

0 = [∂θ, ∂r] = [Xc
i , ∂θ] = [Xc

i , ∂r] = [Xc
i , X

c
j ] (where |i− j| 6= 1)

2 = [Xc
i , X

c
i+1] (where i is an odd integer).
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For any w = (q, r) ∈ E×(0,∞), fix the ordered basis β = (Xh
1 , X

h
2 , . . . , X

h
2n−2, ∂θ)

of TqE. Let Gr(2n−2,R2n−1) denote the Grassmannian manifold of (2n−2)-planes
in R2n−1. Then for any r ∈ (0,∞) there exists a natural map ϕ : E × {r} →
Gr(2n − 2,R2n−1) which sends the point w to the (2n − 2)-plane spanned by
(Xc

1 , . . . , X
c
2n−2)q. Fixing the basis β gives a diffeomorphism from Gr(2n−2,R2n−1)

to RP2n−2, and so we can think of the map ϕ : E × {r} → RP2n−2.
The fact that [Xc

i , ∂r] = 0 tells us that this map ϕ is independent of the chosen
r. Also, [Xc

i , ∂θ] = 0 gives that ϕ is constant in the S1 factor of E. Thus, ϕ
factors through P . Therefore, because P is contractible, there exists a contraction
hr : P → RP2n−2, r ∈ [r1, r2], such that hr1(p) = ϕ(p) and hr2(p) = n for all p ∈ P .
Here, n is the point in RP2n−2 representing the line 〈 ∂∂θ 〉, which corresponds to the

plane 〈Xh
1 , . . . , X

h
2n−2〉 in Gr(2n − 2,R2n−1). For any r ∈ [r1, r2], p ∈ P , and

q ∈ X of the form (p, θ, r), let Pr(p) denote the (2n-2)-plane in TqX corresponding
to hr(p).

We now define new vector fields (Xi)
2n−2
i=1 on X as follows. On E × (0, r1] we

define Xi := Xc
i . On E × [r2,∞) we define Xi := Xh

i . For r ∈ (r1, r2) we vary Xi

from Xc
i to Xh

i via the homotopy hr. There are many ways to vary Xi from Xc
i to

Xh
i . We require that that our choice satisfies the following conditions:

(1) Xi(q) ∈ Pr(p) for q = (p, θ, r) for any θ and i.
(2) The collection (Xi) remains linearly independent throughout the process.
(3) [Xi, ∂θ] = 0 for all i. We can do this since Pr(p) is invariant under θ.
(4) [Xi, Xj ]q has no Xk component for all 1 ≤ k ≤ 2n−2. We can do this since

[X̌a
i , X̌

a
j ]p = 0 for a = h, c and for all i and j.

(5) For 1 ≤ i < 2n − 2 an odd integer and j 6= i + 1, [Xi, Xj ] has no ∂
∂θ

component. We can do this since [Xa
i , X

a
j ] has no ∂

∂θ component for a =
h, c.

(6) |[Xi, ∂r]| < δ for some fixed δ > 0. We can do this by choosing r1 sufficiently
large and by varying the vector fields sufficiently slowly.

Then define the metric g1 by

(4.1) g1 = cosh2(r)
(
dX2

1 + . . .+ dX2
2n−2

)
+ sinh2(r)dθ2 + dr2

where dX2
i denotes the covector field dual to Xi. Note that (dX2

1 + . . .+dX2
2n−2) =

cn−1, but we use the form in equation (4.1) to emphasize that the structure con-
stants are changing as r varies from r0 to r1. Restricting the metric g1 to the
interval (r0, r1] gives the metric g for Step 1.

All that is left to show is that the sectional curvature of g1, restricted to [r0, r1],
is bounded above by a negative constant. This is the content of the next Lemma.

Lemma 4.1. The sectional curvature of g1, restricted to [r0, r1], is bounded above
by a negative constant for r0 and r1 chosen sufficiently large.

Proof. We need to compute the components of the (4, 0) curvature tensor R1 to
g1. Due to conditions (3) through (5) above for the vector fields (Xi), this com-
putation is identical to the curvature computation for Theorem 2.3 but with more
restricted values for the structure constants ci. Due to condition (6) above these
computations will not be exact, but we can make these approximations arbitrarily
close by choosing δ sufficiently small. So, for r1 sufficiently large, we can approx-
imate the components of R1 simply by plugging in the values h(r) = cosh(r) and
v(r) = 2 sinh(r) into the equations in Theorem 2.3.
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Using the notation of Theorem 2.3, we have:

R1
i,j,i,j ≈ −1 R1

i,2n−1,i,2n−1 ≈ −1 +
c2i sinh2(r)

4 cosh4(r)

R1
i,i+1,i,i+1 ≈ −1− 3

cosh2(r)
− 3c2i sinh2(r)

4 cosh4(r)

R1
i,2n,i,2n ≈ −1 R1

2n−1,2n,2n−1,2n ≈ −1

R1
i,i+1,2n−1,2n = 2R1

i,2n−1,i+1,2n = −2R1
i,2n,i+1,2n−1 ≈

−ci
cosh3(r)

R1
i,i+1,k,k+1 = 2R1

i,k,i+1,k+1 = −2R1
i,k+1,i+1,k ≈ −

2

cosh2(r)
− cick sinh2(r)

4 cosh4(r)

where 1 ≤ i, j, k ≤ 2n−2, k is an odd integer different from i, and j 6= i, i+1. Also,
recall that any equations using both i and i+ 1 assume that i is an odd integer.

Note that, for r sufficiently large, all mixed terms above approach 0 whereas the
sectional curvatures of all “coordinate planes” approach −1. Thus, by Lemma 2.4,
the sectional curvature of g1 restricted to [r0, r1] is bounded above by a negative
constant when r0 is chosen sufficiently large.

�

4.2. Step 2: Increasing the angle from gwch to gd over (r1, r2]. This is the
easiest of the four steps. Define v(r) to be 2σ(r), where σ(r) is from Lemma 2.1
in [GT87]. More specifically, v(r) is a smooth positive function which satisfies the
following:

(1) v′(r) > 0 and v′′(r) > 0 for all r > 0.
(2) v(r) = 2 sinh(r) for 0 ≤ r ≤ r1 and v(r) = 2d sinh(r) for r ≥ r2.
(3) We have v′′(r)/v(r) ≈ 1 for all r, and where this approximation can be

made arbitrarily close by taking r2 − r1 arbitrarily large.
(4) We have

v′(r) sinh(r)

v(r) cosh(r)
≈ 1 for all r

and where this approximation can also be made arbitrarily close by taking
r2 − r1 sufficiently large.

This choice of v(r) clearly interpolates between gwch and gd by condition (2)
above. Conditions (3) and (4) guarantee that all sectional curvatures stay arbitrar-
ily close to those of gwch (and, equivalently, gd). An important point to note is
that, in the curvature equations in Theorem 2.3, all of the terms that have a v2

in the numerator and an h4 in the denominator are multiplied by ci. Thus these
terms are all zero in the metrics gwch and gd, and therefore replacing v = 2 sinh(r)
with v = 2d sinh(r) does not change the values of the sectional curvature tensor.
Then, inserting the above definition of v(r) into equation (2.5) defines g over the
region (r1, r2].
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4.3. Step 3: Warping gwch to gsch over (r2, r3]. Arbitrarily C2-small changes
to the coefficients of a metric produce arbitrarily small changes to the sectional cur-
vature tensor. So, for r2 chosen sufficiently large, we can make the approximations

cosh(r) ≈ 1

2
er ≈ sinh(r).

in order to simplify all curvature computations. Recall that

gwch = cosh2(r)cn−1 + sinh2(r)dθ2 + dr2 ≈ 1

4
e2rcn−1 +

1

4
e2rdθ2 + dr2

gsch = cosh2(r)cn−1 +
1

4
sinh2(2r)dθ2 + dr2 ≈ 1

4
e2rcn−1 +

1

4

(
1

4
e4r
)
dθ2 + dr2.

Fix small positive constants εf , εg > 0 whose size will depend on the size of
r2. Let f(r) and g(r) be positive, smooth, real-valued functions defined on [0,∞)
which satisfy the following:

(1) f(r) = 1 for r ≤ r2, f(r) = 1
2 for r ≥ r3, and f is non-increasing.

(2) |f ′(r)|, |f ′′(r)| < εf for all r.
(3) g(r) = r for r ≤ r2, g(r) = 2r for r ≥ r3, and g is non-decreasing.
(4) 1 ≤ g′(r) ≤ 2 + εg and |g′′(r)| < εg for all r.

It is clear that, for r3 chosen sufficiently large, such functions f and g exist for
arbitrarily small (but fixed) εf and εg.

Now define

v3(r) = f(r)
(
eg(r) − e−g(r)

)
≈ f(r)eg(r)

and

g3 = cosh2(r)cn−1 +
1

4
v23(r)dθ2 + dr2 ≈ 1

4
e2rcn−1 +

1

4

(
f(r)eg(r)

)2
dθ2 + dr2.

By construction, the metric g3 interpolates between gwch and gsch over the
interval (r2, r3]. So the metric g in Step 3 will just be g3 restricted to this interval.
All that is left to show is that the sectional curvature of g3 is bounded above by a
negative constant.

Lemma 4.2. The sectional curvature of g3, restricted to [r2, r3], is bounded above
by a negative constant for r2 and r3 chosen sufficiently large.

Proof. Using the notation of Theorem 2.3, and recalling that all structure constants
ci are identically zero in both metrics gwch and gsch, the components of the (4, 0)
curvature tensor R3 for g3 are:

R3
i,j,i,j ≈ −1− 4

e2r
R3
i,2n−1,i,2n−1 ≈ −

f ′

f
− g′

R3
i,i+1,i,i+1 ≈ −1− 16

e2r
R3
i,2n,i,2n = −1

R3
2n−1,2n,2n−1,2n ≈ −

1

f
(f ′′ + 2f ′g′)− (g′)2 − g′′

R3
i,i+1,2n−1,2n = 2R3

i,2n−1,i+1,2n = −2R3
i,2n,i+1,2n−1 = 0

R3
i,i+1,k,k+1 = 2R3

i,k,i+1,k+1 = −2R3
i,k+1,i+1,k ≈ −

8

e2r
.



COMPLEX HYPERBOLIC GROMOV-THURSTON MANIFOLDS 15

Fix 1
4 > δ > 0. Then we may choose r2 sufficiently large and εf , εg sufficiently

small (by choosing r3 sufficiently large), so that

− δ < −|R3
i,i+1,k,k+1| < 0

− 4− δ < R3
2n−1,2n,2n−1,2n < −1 + δ

− 2− δ < R3
i,2n−1,i,2n−1 < −1 + δ.

Lemma 2.4 then proves that the sectional curvature of g3 is bounded above by
a negative constant. �

4.4. Step 4: Bending gsch to cn over (r3, r4]. Recall that both gsch and cn are
equal to

(4.2) cosh2(r)cn−1 +
1

4
sinh2(r)dθ2 + dr2 ≈ 1

4
e2rcn−1 +

1

4

(
1

4
e4r
)
dθ2 + dr2.

The only difference in the metrics is the value of the structure constants. Using the
notation of Subsection 2.3, each structure constant ci has value 0 in gsch whereas
it has value 2 with respect to cn.

So we need to “bend” the vector fields (Xi) so that, for i an odd integer, the
Lie bracket [Xi, Xi+1] varies from 0 to 2 ∂

∂θ . We do this exactly as in Subsection
4.1, but in reverse. So the metric g4 is defined as in (4.2), but with Lie brackets
defined via (1) through (6) from Subsection 4.1 (in reverse). So all that is left to
show is that the sectional curvature of g4, restricted to [r3, r4], is bounded above
by a negative constant.

Lemma 4.3. The sectional curvature of g4, restricted to [r3, r4], is bounded above
by a negative constant for r3 and r4 chosen sufficiently large.

Proof. As explained in the proof of Lemma 4.1, we can approximate the components
of the (4, 0) curvature tensor R4 to g4 using the equations in Theorem 2.3 when
choosing r4 sufficiently large. Then, for r3 sufficiently large, we can approximate
the components of R4 by plugging in the values h(r) ≈ 1

2e
r and v(r) ≈ 1

2e
2r.

Using the notation of Theorem 2.3, we have:

R4
i,j,i,j ≈ −1− 4

e2r
R4
i,2n−1,i,2n−1 ≈ −2 +

c2i
4

R4
i,i+1,i,i+1 ≈ −1− 16

e2r
− 3c2i

4

R4
i,2n,i,2n ≈ −1 R4

2n−1,2n,2n−1,2n ≈ −4

R4
i,i+1,2n−1,2n = 2R4

i,2n−1,i+1,2n = −2R4
i,2n,i+1,2n−1 ≈ −ci

R4
i,i+1,k,k+1 = 2R4

i,k,i+1,k+1 = −2R4
i,k+1,i+1,k ≈ −

8

e2r
− cick

2

where 1 ≤ i, j, k ≤ 2n−2, k is an odd integer different from i, and j 6= i, i+1. Also,
recall that any equations using both i and i+ 1 assume that i is an odd integer.

We will apply Lemma 2.4 to finish the proof. Of the inequalities necessary to
apply Lemma 2.4, all but three are immediately obvious. The three that are not
obvious at first are:

(1) R1
i,i+1,i,i+1 ≤ −|R1

i,i+1,k,k+1|
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(2) R1
i,i+1,i,i+1 ≤ −|R1

i,i+1,2n−1,2n|
(3) R1

i,2n−1,i,2n−1 ≤ −|R1
i,2n−1,i+1,2n|

We deal with each individually. In what follows, we assume that all structure
constants have values in [0, 2] in order to remove the absolute value signs.

For inequality (1), we have

R1
i,i+1,i,i+1 ≤ −|R1

i,i+1,k,k+1| ⇐⇒ −1− 16

e2r
− 3c2i

4
≤ −8

e2r
− cick

2

⇐⇒ −1− 8

e2r
− ci

4
(3ci − 2ck) ≤ 0.

Now, the worst case scenario is when ck = 2. Also, for r large, 8/e2r ≈ 0. So
setting ck = 2 and 8/e2r = 0, we need to show that

−1 + ci −
3

4
c2i ≤ 0 ⇐⇒ 0 ≤ 3c2i − 4ci + 4.

From here, a simple calculus argument shows that the polynomial 3c2i − 4ci + 4 is
always positive.

For inequality (2), we have

R1
i,i+1,i,i+1 ≤ −|R1

i,i+1,2n−1,2n| ⇐⇒ −1− 16

e2r
− 3c2i

4
≤ −ci.

As above, we set 16/e2r = 0. The resulting inequality is then equivalent to

0 ≤ 3c2i − 4ci + 4

which is the same polynomial that appeared above.
Finally, for inequality (3) we need to show

R1
i,2n−1,i,2n−1 ≤ −|R1

i,2n−1,i+1,2n| ⇐⇒ −2 +
c2i
4
≤ −ci

2

⇐⇒ c2i + 2ci − 8 ≤ 0.

Now, the polynomial c2i + 2ci − 8 is increasing on [0, 2], and so has a maximum
value of 0 at ci = 2. Thus, inequality (3) always holds, proving the Lemma.

�

5. Preliminaries

5.1. Formula for the curvature tensor of CHn in terms of the complex
structure J . The components of the (4,0) curvature tensor of the complex hyper-
bolic metric g can be expressed in terms of g and the complex structure J . The
following formula can be found in [KN96] or in Section 5 of [Bel11]. In this formula
X,Y, Z, and W are arbitrary vector fields.

〈Rg(X,Y )Z,W 〉g = 〈X,W 〉g〈Y, Z〉g − 〈X,Z〉g〈Y,W 〉g(5.1)

+ 〈X, JW 〉g〈Y, JZ〉g − 〈X, JZ〉g〈Y, JW 〉g + 2〈X, JY 〉g〈W,JZ〉g.
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5.2. General curvature formulas for warped product metrics. The curva-
ture formulas below, which were worked out by Belegradek in [Bel12] and stated
in Appendix B of [Bel11], apply to metrics of the form g = gr + dr2 on manifolds
of the form E × I where I is an open interval and E is a manifold. The formulas
are true provided that for each point q ∈ E there exists a local frame {Xi} on a
neighborhood Uq in E which is gr-orthogonal for each r. Such a family of metrics
(E, gr) is called simultaneously diagonalizable. Let

hi(r) :=
√
gr(Xi, Xi).

Then the local frame {Yi} defined by

Yi =
1

hi
Xi

is a gr-orthonormal frame on Uq for any value of r. We then have the following
formulas for the (4,0) curvature tensor Rg in terms of the (4,0) curvature tensor
Rgr , the collection {hi}, and the Lie brackets [Yi, Yj ]. Note that 〈, 〉 is used to

denote the metric g and ∂r = ∂
∂r .

〈Rg(Yi, Yj)Yi, Yj〉 = 〈Rgr (Yi, Yj)Yi, Yj〉 −
h′ih
′
j

hihj
(5.2)

〈Rg(Yi, Yj)Yk, Yl〉 = 〈Rgr (Yi, Yj)Yk, Yl〉 if {i, j} 6= {k, l}(5.3)

〈Rg(Yi, ∂r)Yi, ∂r〉 = −h
′′
i

hi
〈Rg(Yi, ∂r)Yj , ∂r〉 = 0 if i 6= j(5.4)

2〈R (∂r, Yi)Yj , Yk〉 = 〈[Yi, Yk], Yj〉
(

ln
hj
hk

)′
+ 〈[Yj , Yi], Yk〉

(
ln
hk
hj

)′
(5.5)

+ 〈[Yj , Yk], Yi〉
(

ln
h2i
hjhk

)′
.
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